Superposition of waves (review)

PHYS 168 Lasers SJSU Spring 2012 Eradat

Superposition of waves

- Superposition of waves is the common conceptual basis for some optical phenomena such as:
 - Polarization
 - Interference
 - □ Diffraction
- What happens when two or more waves overlap in some region of space.
- How the specific properties of each wave affects the ultimate form of the composite disturbance?
- Can we recover the <u>ingredients</u> of a complex disturbance?

Linearity and superposition principle $2^{2}w(r,t) = 1 - 2^{2}w(r,t)$

The scaler 3D wave equation $\frac{\partial^2 \psi(r,t)}{\partial r^2} = \frac{1}{V^2} \frac{\partial^2 \psi(r,t)}{\partial t^2}$ is a linear

differential equation (all derivatives apper in first power). So any

linear combination of its solutions $\psi(r,t) = \sum_{i=1}^{n} C_{i} \psi_{i}(r,t)$ is a solution.

Superposition principle: resultant disturbance at any point in a medium is the <u>algebraic sum</u> of the separate constituent waves. We focus only on <u>linear systems and scalar functions</u> for now. At high intensity limits most systems are nonlinear.

Example: Inensity of a typical focused laser beam =~ 10^{10} *W* / cm^2 compared to sun light on earth ~ 10 *W* / cm^2 .

Electric field of the laser beam can trigger nonlinear phenomena.

PHYS 168 Spring 2012 SJSU Eradat Superposition

Superposition of two waves

Two light rays with same frequency meet at point p traveled by x_1 and x_2 $E_1 = E_{01} \sin \left[\omega t - (kx_1 + \varepsilon_1) \right] = E_{01} \sin \left[\omega t + \alpha_1 \right]$ $E_2 = E_{02} \sin \left[\omega t - (kx_2 + \varepsilon_2) \right] = E_{02} \sin \left[\omega t + \alpha_2 \right]$ Where $\alpha_1 = -(kx_1 + \varepsilon_1)$ and $\alpha_2 = -(kx_2 + \varepsilon_2)$ Magnitude of the composite wave is sum of the magnitudes at a point in space & time or: $E = E_1 + E_2 = E_0 \sin(\omega t + \alpha)$ where $E_0^2 = E_{01}^2 + E_{02}^2 + \underline{2E_{01}E_{02}\cos(\alpha_2 - \alpha_1)} \text{ and } \tan \alpha = \frac{E_{01}\sin\alpha_1 + E_{02}\sin\alpha_2}{E_{01}\cos\alpha_1 + E_{02}\cos\alpha_2}$ The resulting wave has same frequency but different amplitude and phase. $2E_{01}E_{02}\cos(\alpha_2-\alpha_1)$ is the interference term $\delta \equiv \alpha_2 - \alpha_1$ is the phase difference.

Phase difference and interference $\delta \equiv \alpha_2 - \alpha_1 = (kx_1 + \varepsilon_1) - (kx_2 + \varepsilon_2) = \frac{2\pi}{\lambda} (x_1 - x_2) + (\varepsilon_1 - \varepsilon_2) = \delta_1 + \delta_2$

<u>Total</u> phase difference between the two waves has two different origins. a) $\delta_2 = (\varepsilon_1 - \varepsilon_2)$ phase difference due to the <u>initial phase of the waves</u>. Waves with constant initial phase difference are said to be coherent.

b) $\delta_1 = \frac{2\pi}{\lambda_0} n(x_1 - x_2) = k_0 \Lambda$ is palse difference due to the Optical Path

Difference or $\underline{OPD} \equiv \boxed{\Lambda = n(x_1 - x_2)}$

Waves in-phase: $\delta \equiv \alpha_2 - \alpha_1 = 0, \pm 2\pi, \pm 4\pi,...$ then E_0 is maximum Waves out of phase: $\delta \equiv \alpha_2 - \alpha_1 = \pm \pi, \pm 3\pi,...$ then E_0 is minimum Waves in-phase interfere constructively $E = E_{\text{max}} = (E_{01} + E_{02})^2$ Waves out of phase interfere destructively $E = E_{\text{min}} = (E_{01} - E_{02})^2$ If $E_{01} = E_{02}$ then $E_{\text{max}} = (2E_{01})^2$ and $E_{\text{min}} = 0$

 $\frac{\Lambda}{\lambda_0} = \frac{x_1 - x_2}{\lambda} \rightarrow \text{number of waves in medium= number of waves in vacuum}$

Addition of two waves with same

Two waves with path difference

For two waves with no initial phase difference ($\varepsilon_1 = \varepsilon_2 = 0$) but a path difference of Δx we have:

 $E_1 = E_{01} \sin \left(\omega t - k(x + \Delta x)\right) = E_{01} \sin \left[\omega t + \alpha_1\right]$ $E_2 = E_{02} \sin \left(\omega t - kx\right) = E_{02} \sin \left[\omega t + \alpha_2\right]$

 $\alpha_2 - \alpha_1 = k\Delta x$ Amplitude is a function of path difference

The resulting wave is

$$E = 2E_0 \cos\left(\frac{k\Delta x}{2}\right) \sin\left[\omega t - k\left(x + \frac{\Delta x}{2}\right)\right]$$

Constructive interference: if $\Delta x \ll \lambda$, or $\Delta x \approx \pm 2m\lambda$ then the resulting amplitude is $\sim 2E_0$

Destructive interference: $\Delta x \approx \pm (2m+1)\lambda$ then $E \approx 0$

Exercise

2.1) Plot E_1 , E_2 , $E_1 + E_2$, and $(E_1 + E_2)^2$ for the following two sinusoidal waves for $0 < x < 5\lambda$ with $\lambda = 500$ nm: $E_1 = E_{01} \sin(\omega t - (kx + \varepsilon_1))$ and $E_2 = E_{02} \sin(\omega t - (kx + \varepsilon_2))$ a) same frequency, $E_{01} = E_{02} = 2$, zero initial phase, both forward. b) same frequency, $E_{01} = E_{02} = 2$, $\varepsilon_1 = 0$, $\varepsilon_2 = \pi$, both forward. c) same frequency, $E_{01} = E_{02} = 2$, $\varepsilon_1 = 0$, $\varepsilon_2 = \pi/2$, both forward. d) same frequency, $E_{01} = E_{02} = 2$, $\varepsilon_1 = 0$, $\varepsilon_2 = \pi, E_1$ forward, E_2 backward.

e) same frequency, $E_{02} = 2E_{01} = 2$, $\varepsilon_1 = 0$, $\varepsilon_2 = 0$, both forward. f) same frequency, $E_{02} = 2E_{01} = 2$, $\varepsilon_1 = 0$, $\varepsilon_2 = \pi$, both forward. g) Compare the results of direct superposition with the formula derived in text for case a in slide 5 (Notice the difference between <u>*a* tan</u> and <u>*a* tan 2</u> functions in MATLAB

Phasors and complex number representation

- Each harmonic function is shown as a rotating vector (phasor)
 - projection of the phasor on the x axis is the instantaneous value of the function,
 - □ length of the phasor is the maximum amplitude
 - □ angle of the phasor with the positive x direction is the phase of the wave.

$$E = E_0 e^{i(\omega t + \alpha_1)}$$

Example of superposition using phasors

 $E_1(t) = E\cos(\omega t + \phi)$ $E_2(t) = E\cos(\omega t)$ $\vec{E}_{p} = \vec{E}_{1} + \vec{E}_{2}$ a vector sum of \vec{E}_{1} and \vec{E}_{2} Magntude of \vec{E}_{n} (from triangonomety) $E_{p}^{2} = E^{2} + E^{2} - 2E^{2}\cos(\pi - \phi)$ $E_{p}^{2} = E^{2} + E^{2} + 2E^{2}\cos\phi$ Using $1 + \cos\phi = 2\cos^2(\phi/2)$ $E_{p}^{2} = 2E^{2}(1 + \cos\phi) = 4E^{2}\cos^{2}(\phi/2)$ Amplitude of two indentical waves interfering with phase difference of ϕ is independent of time:

 $E_p = 2E \left| \cos \frac{\phi}{2} \right|$

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

PHYS 168 Spring 2012 SJSU Eradat Superposition

Superposition of many waves

Superposition of any number of coherent harmonic waves with a given frequency, ω and traveling in the same direction leads to a harmonic wave of that same frequency.

$$E = \sum_{i=1}^{N} E_{0i} \cos(\alpha_{i} \pm \omega t) = E_{0} \cos(\alpha \pm \omega t)$$

$$E_{0}^{2} = \sum_{i=1}^{n} E_{0i}^{2} + 2\sum_{j>i}^{N} \sum_{i=1}^{N} E_{0i} E_{0j} \cos(\alpha_{i} - \alpha_{j}) \text{ and } \tan \alpha = \frac{\sum_{i=1}^{N} E_{0i} \sin \alpha_{i}}{\sum_{i=1}^{N} E_{0i} \cos \alpha_{i}}$$

$$\alpha_{i} = -(kx + \varepsilon_{i}) \text{ and } \alpha_{j} = -(kx + \varepsilon_{j})$$
For coherent sources $\alpha_{i} = \alpha_{j}$ and $E_{0}^{2} = \sum_{i=1}^{N} E_{0i}^{2} + 2\sum_{j>i}^{N} \sum_{i=1}^{N} E_{0i} E_{0j} = \left(\sum_{i=1}^{N} E_{0i}\right)^{2}$
For incoherent sources (random phases) the second term is zero.
Flux density for N equal-amplitude emmiters: $\left(E_{0}^{2}\right)_{incoh} = NE_{01}^{2}; \left(E_{0}^{2}\right)_{coh} = \left(NE_{0}^{2}\right)$

Exercise

2.2) Write a MATLAB routine to calculate the amplitude and phase of *N* harmonic waves (cosine) with same frequencies but varying initial phase and amplitudes. Assume the wavelength is 500 *nm* and V = ca) The program should read the phase and amplitude of the waves from a file that has two columns and *N* rows. Test the program for the following waves $E_1 = 1$, $\varepsilon_1 = 0$, $E_2 = 1$, $\varepsilon_2 = \pi/4$. Once made sure it is working, create a file with the folloing waves and plot their superposition from 0 to 5λ .

 $E_1 = 1, \ \varepsilon_1 = 0, \ E_2 = 1, \ \varepsilon_2 = 10, \ E_3 = 2, \ \varepsilon_3 = 20^0, \ E_4 = 3,$ $\varepsilon_4 = 30^0, \ E_5 = 2, \ \varepsilon_5 = 40^0, \ E_6 = 1, \ \varepsilon_6 = 50^0, \ E_7 = 1, \ \varepsilon_7 = 60^0$

b) Next run the program for N = 101 and $\varepsilon_i = \varepsilon_1 + \frac{i}{100}\pi$, where $\varepsilon_1 = \frac{\pi}{2}$

and $E_i = 2$. This time create the phases and amplitudes inside the routine and don't read from a file.

Addition of waves: different frequencies I

Mathematics behind light modulation and light as a carrier of information. Two propagating waves are superimposed

$$E_{1} = E_{01} \cos(k_{1}x - \omega_{1}t)$$

$$E_{2} = E_{01} \cos(k_{2}x - \omega_{2}t)$$

$$k_{1} > k_{2} \text{ and } \omega_{1} > \omega_{2} \text{ with equal amplitudes and zero inital phases}$$

$$E = E_{1} + E_{2} = E_{01} [\cos(k_{1}x - \omega_{1}t) + \cos(k_{2}x - \omega_{2}t)]$$
using $\cos \alpha + \cos \beta = 2 \cos \frac{1}{2} (\alpha + \beta) \cos \frac{1}{2} (\alpha - \beta)$

$$E = 2E_{01} \cos \frac{1}{2} [(k_{1} + k_{2})x - (\omega_{1} + \omega_{2})t] \times \cos \frac{1}{2} [(k_{1} - k_{2})x - (\omega_{1} - \omega_{2})t]$$
Need to simplify this

Addition of waves: different frequencies II $E = 2E_{01}\cos\left[k_m x - \omega_m t\right] \times \cos\left[k_m x - \omega t\right]$ with the following definitions Average angular frequency $\equiv \omega = (\omega_1 + \omega_2)/2$ Average propagation number $\equiv k = (k_1 + k_2)/2$ Modulation angular frequency $\equiv \omega_m = (\omega_1 - \omega_2)/2$ Modulation propagation number $\equiv k_m = (k_1 - k_2) / 2$ Time-varying modulation amplitude = $E_0(x,t) = 2E_{01}\cos\left[k_m x - \omega_m t\right]$ Superimposed wavefunction: $E = E_0(x,t)\cos \left| kx - \omega t \right|$ For large ω if $\omega_1 \approx \omega_2$, then $\omega \gg \omega_m$ we will have a slowly varying amplitude with a rapidly oscillating wave PHYS 168 Spring 2012 SJSU Eradat Superposition 14 Irradiance of two superimposed waves with different frequencies $E_0^2(x,t) = 4E_{01}^2 \cos^2 \left[k_m x - \omega_m t \right] = 2E_{01}^2 \left[1 + \cos \left(2k_m x - 2\omega_m t \right) \right]$ Beat frequency $\equiv 2\omega_m = \omega_1 - \omega_2$ or oscillation frquency of the $E_0^2(x,t)$

Amplitude, E_0 , oscilates at ω_m , the modulation freuency Irradiance, E_0^2 , varies at $2\omega_m$, twice the modulation frequency

Two waves with <u>different amplitudes</u> produce beats with <u>less contrast</u>.

Phase velocity of a wave

Constant-phase point: a point on a progressive wave with a

constant magnitude of the disturbance.

 $\psi(x,t) = A\sin(kx \mp \omega t + \varepsilon)$

Phase velocity of a wave is speed of the motion of a

constant-phase point on a disturbance V_p

$$_{phase} = \frac{\partial x}{\partial t} \bigg|_{\phi}$$

Phase velocity is speed of the motion of the disturbance.

Ex: calculate value of the phase velocity for the above wave.

Phase of a harmonic wave at time t: $\phi = kx \mp \omega t + \varepsilon$

For constant phase:
$$\frac{\partial \phi}{\partial t} = 0 \rightarrow k \frac{\partial x}{\partial t}\Big|_{\phi} \mp \omega = 0 \rightarrow V_{phase} = \pm \frac{\omega}{k}$$

Group velocity

In nondispersive media velocity of a wave is independent of its frequency.

For a single frequency wave there is one velocity and that is

$$V_{phase} = \frac{\omega}{k}$$

When a vave is composed of different frequency elements, the resulting disturbance will travel with differnt velocity than phase velocity of its components. $E = 2E_{01} \cos\left[k_m x - \omega_m t\right] \times \cos\left[\overline{k}x - \overline{\omega}t\right]$

 $V_{phase} = \frac{\omega}{k} \text{ velocity of a <u>constant phase point</u> on the high frequency wave}$ $V_{group} = \frac{\omega_m}{k_m} = \left(\frac{d\omega}{dk}\right)_{\overline{\omega}} \frac{\text{velocity of a constant amplitude point}}{\omega} \text{ on the}$

modulation envelope

 V_g may be smaller, equal, or larger than V_p <u>To calculate</u> the V_p and V_g we need the dispersion relation $\omega = \omega(k)$

Dispersion relation ω v.s. k or $\omega = f(k)$

- Phase velocity for a given frequency is slope of a line on the dispersion curve that connects that point to the origin or w/k.
- Group velocity for that frequency is the slope of the dispersion curve at that point or dw/dk.
- We also may have a gap in the dispersion relation for a frequency band. In that case the velocities are not defined because waves can not propagate

PHYS 168 Spring 2012 SJSU Eradat Superposition

Finite waves

- Finite wave: any wave starts and ends in a certain time interval
- Any finite wave can be viewed as a really long pulse
- Any pulse is a result of superposition of numerous different frequency harmonic waves called <u>Fourier components.</u>
- <u>Wave packet</u> is a localized pulse that is composed of many waves that cancel each other everywhere else but at a certain interval in space.
- We need to study Fourier Analysis to understand actual waves, pulses, and wave packets.
- Width of a wave packet is proportional to the range of k_m of the wave packet.
- Since each component of the wave packet has different phase velocity in the medium, through the relationship $V_p = w/k$, k of the components change in the dispersive media.
- As a result k_m of the modulation disturbance changes
- Consequently group velocity changes.
- This results in change of the width of the wave packet.
- So wave packets inside a medium may spread or become narrower.