Fourier Analysis

Anharmonic periodic waves Fourier series

Fourier Optics

- Study of light with the mathematical techniques and insight of communications theory (1950s) bound with the mathematical formalism of Fourier analysis. Some of the results are:
 - Image formation and evolution
 - Transfer functions
 - Spatial filtering
- Fourier Theorem (1768 Jean Baptist Joseph, Baron de Fourier)
 - A function of f(x), having a spatial period of λ , can be synthesized by a sum of harmonic functions whose wavelengths are integral sub-multiples of λ (that is λ ,

$$f(x) = C_0 + C_1 \cos\left(\frac{2\pi}{\lambda}x + \varepsilon_1\right) + C_2 \cos\left(\frac{2\pi}{\lambda/2}x + \varepsilon_2\right) + C_3 \cos\left(\frac{2\pi}{\lambda/3}x + \varepsilon_3\right) + \dots$$

Anharmonic periodic waves: periodic but not sinusoidal

- How we can construct any real wave out of appropriately chosen harmonic waves?
- What is the spatial period of superposition of two waves?

Frequency spectrum

Mathematical form of the Fourier series representation

$$f(x) = C_0 + C_1 \cos(\frac{2\pi}{\lambda}x + \varepsilon_1) + C_2 \cos(\frac{2\pi}{\lambda/2}x + \varepsilon_2) + C_3 \cos(\frac{2\pi}{\lambda/3}x + \varepsilon_3) + \dots$$

f(x) is a periodic function

The more terms we have, the better an arbitrary anharmonic function is represented.

If we have <u>infinite number of terms</u> in the Fourier series, f(x) can fit any arbitrary anharmonic function with any period. Using

 $C_m \cos(mkx + \varepsilon_m) = A_m \cos mkx + B_m \sin mkx$ the f(x) can also be written as:

$$f(x) = \frac{A_0}{2} + \sum_{m=1}^{\infty} A_m \cos mkx + \sum_{m=1}^{\infty} B_m \sin mkx$$

Where
$$A_m = C_m \cos \varepsilon_m$$
; $B_m = -C_m \sin \varepsilon_m$; $A_0 / 2 = C_0$

Together they build the AC components.

DCcomponent of the wave anharmonic function

Fourier Analysis: finding A₀, A_m, B_m for a specific periodic function.

Fourier Analysis

$$f(x) = \frac{A_0}{2} + \sum_{m=1}^{\infty} A_m \cos mkx + \sum_{m=1}^{\infty} B_m \sin mkx$$

Using the orthognality of \sin and \cos functions we can find A_0 , A_m , B_m

$$A_0 = \frac{2}{\lambda} \int_0^{\lambda} f(x) dx; \quad A_m = \frac{2}{\lambda} \int_0^{\lambda} f(x) \cos(mkx) dx; \quad B_m = \frac{2}{\lambda} \int_0^{\lambda} f(x) \sin(mkx) dx$$

For even functions or symmetric functions about x,

$$f(-x) = f(x) \rightarrow B_m = 0$$
 for all m (can't contain sin components)

For odd functions or anti-symmetric functions about *x*,

$$f(-x) = -f(x) \rightarrow A_m = 0$$
 for all m (can't contain cos components)

 $\frac{A_0}{2}$ is the mean value of the f(x) or the DC component of the waves

Advantage of Fourier expansion: it is possible to expand discontinious

functions using Fourier expansion that Taylor or other expansions can not represent them. Because there is no derivative.

Change of intervals and complex Fourier series

In general for a piecewise regular function with a spatial period of λ we have:

$$f(x) = \frac{A_0}{2} + \sum_{m=1}^{\infty} A_m \cos \frac{m\pi x}{\lambda/2} + \sum_{m=1}^{\infty} B_m \sin \frac{m\pi x}{\lambda/2}$$

$$A_{m} = \frac{2}{\lambda} \int_{x_{0}}^{x_{0}+\lambda} f(x) \cos \frac{m\pi x}{\lambda/2} dx; \ B_{m} = \frac{2}{\lambda} \int_{x_{0}}^{x_{0}+\lambda} f(x) \sin \frac{m\pi x}{\lambda/2} dx; \ A_{0} = \frac{2}{\lambda} \int_{x_{0}}^{x_{0}+\lambda} f(x) dx$$

Integration can be over any interval of $(x_0, x_0 + \lambda)$. One may use $k = 2\pi/\lambda$

Complex Fourier series:
$$f(x) = \sum_{m=-\infty}^{\infty} C_m e^{imkx}$$

$$C_m = \frac{1}{2}(A_m - iB_m);$$
 $C_{-m} = \frac{1}{2}(A_m + iB_m);$ $C_0 = \frac{1}{2}A_0$ or

$$C_{m} = \frac{1}{\lambda} \int_{x_{0}}^{x_{0}+\lambda} f(x)e^{-i\frac{m2\pi x}{\lambda}} dx = \frac{1}{\lambda} \int_{x_{0}}^{x_{0}+\lambda} f(x)e^{-imkx} dx$$

Superposition of many waves Accuracy and number of Fourier components

Plot shows superposition of N harmonic waves with wavelengths and amplitudes of each wave one unit less than the previous one.

Exercise

3.1) Compute the Fourier series that corresponds to a square wave.

Amplitude of the wave is 1 and f(0) = +1. $f_{even}(x) = \begin{cases} +1 & \text{when } -\lambda/4 < x \le \lambda/4 \\ -1 & \text{when } \lambda/4 < x \le 3\lambda/4 \end{cases}$

Plot your results for both odd and even function for i=5 and i=100 where i is the number of fourier components superimposed.

The odd function of the same wave is: $f_{odd}(x) = \begin{cases} ^{+1 \text{ when } 0 < x \le \lambda/2} \\ -1 \text{ when } \lambda/2 < x \le \lambda \end{cases}$ The Fourier series for this function can be found in Hecht.

Exercise

3.2) Find the Fourier series that represents the following function. First plot the function to see its shape, odd and evenness.

$$f(x) = \begin{cases} \frac{1}{2}(n-x) & 0 < x \le \pi \\ -\frac{1}{2}(n+x) & -\pi \le x < 0 \end{cases}$$

Answr:
$$\sum_{m=1}^{\infty} \frac{\sin mx}{m}$$

Exercise: A real application

3.3) A plane wave of amplitude E_0 impinging normally on a large horizontal Ronchi ruling that is a grating formed of alternatively transparent and opaque stripes, each of width b. The emerging electric field over the screen or aperture is a step function.

Compute its Fourier series representation, assuming it to have

effectively infinite extend.

Time domain

For any anharmonic periodic prograssive disturbance (wave) we can write

$$f(x \pm Vt) = \frac{A_0}{2} + \sum_{m=1}^{\infty} A_m \cos mk(x \pm Vt) + \sum_{m=1}^{\infty} B_m \sin mk(x \pm Vt)$$

or

$$f(x \pm Vt) = \sum_{m=1}^{\infty} C_m \cos[mk(x \pm Vt) + \varepsilon_m]$$

Nonperiodic waves

- In optics and quantum mechanics all real waves are pulses.
- In order to generate a pulse out of harmonic functions that have a certain width and shape, we need to know
 - what frequency elements to add
 - How much of each frequency element to add
- That is finding the frequency spectrum of the pulses.

Addition of waves: different frequencies

To generate beats we added two frequencies ω_1 and ω_2

$$E = 2E_{01}\cos\left[k_{m}x - \omega_{m}t\right] \times \cos\left[\overline{k}x - \overline{\omega}t\right]$$

the carrier frequency is average of the added frequencies $\overline{\omega} = \frac{1}{2}(\omega_1 + \omega_2)$

- 1) If we add more frequency elements symmetrically around $\overline{\omega}$, then $\overline{\omega}$ will not change.
- 2) If we reduce the spacing between the frequency elements, then frequency of modulation $\omega_{\scriptscriptstyle m}=\frac{1}{2}(\omega_{\scriptscriptstyle 1}-\omega_{\scriptscriptstyle 2})$ will decrease. This is the frequency of the envelope meaning the wavelength of the beats will increase and beats will have more separation.
- 3) When number of frequency elements go to infinity, we will have a single pulse. The λ_m goes to infinity.

Beats with different frequency intervals

PHYS 258 Spring 2010 SJSU Eradat Fourier Series