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Propagation phenomenon as a linear spatial filter



Diffraction
• Diffraction is a phenomena in the realm of physical optics. 

Applicable to all waves such as acoustic and EM  waves.
• Diffraction is a limiting factor on data processing and imagingDiffraction is a limiting factor on data processing and imaging 

system performance. So we need to understand it to design better 
systems. 

• Diffraction should not be mistaken with 
– Refraction: change of direction of propagation of light due to a 

change in index of refraction of the environment
– Penumbra: finite extend of a source causes the light transmitted 

from an aperture to spread away from it. There is no bending of 
light involved in Penumbra effect.   

• Diffraction (Sommerfeld): any deviation of light rays from rectilinear 
that cannot be interpreted as reflection or refractionthat cannot be interpreted as reflection or refraction.

• Diffraction is caused by confinement of the lateral extend of a wave
(obstruction of the wavefront) and its effects are most pronounced 
when size of the confinement is comparable to the wavelength of the
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when size of the confinement is comparable to the wavelength of the 
light. 



History of diffraction theory
• 1665 Grimaldi reported diffraction for the first time. 
• 1678 Huygens attempted to explain the phenomenon 

– Each point on the wavefront of a disturbance is considered to be a new source of a 
“secondary” spherical disturbance. Then the wavefront at later instances can be 
found by constructing the “envelope” of the secondary wavelet.

1700 P th d b th f t th t N t f d th• 1700s Progress on wave theory was suppressed  by the fact that Newton favored the 
corpuscular theory of light (geometrical optics).

• 1804 Thomas Young introduced the concept of interference to the wave theory of light 
(production of darkness from light).

• 1818 Augustin Jean Fresnel used the wavelets from Huygens theory and Young’s• 1818 Augustin Jean Fresnel used the wavelets from Huygens theory and Young s 
interference theory letting the wavelets interfere mutually to calculate distribution of light 
in diffraction patterns with excellent accuracy. 

• 1860 Maxwell identified light as electromagnetic field.
• 1882 Gustav Kirchhoff put the Fresnel and Maxwell’s ideas together He made two1882 Gustav Kirchhoff put the Fresnel and Maxwell s ideas together. He made two 

assumptions about the boundary values of the light incident on surface of an obstacle 
that were not absolutely correct but an approximation and constructed a theory that 
exhibited excellent agreement with experimental results. He concluded
– The amplitudes and phases ascribed to the secondary sources of Huygens wavelets 

l i l f th t f th li htare logical consequences of the wave nature of the light. 
• 1892 Poincare; 1894 Sommerfeld proved that the boundary values set by Kirchhoff are 

inconsistent with one another. So Kirchhoff’s formulation of Huygens-Fresnel principle is 
regarded as the first approximation although under most conditions it yields excellent 
results
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results.
• 1896 Sommerfeld modified the Kirchhoff’s theory using theory of Green’s function. The 

result is Rayleigh-Sommerfeld diffraction theory.
• 1923 Kottler: first satisfactory generalization of the vectorial diffraction theory.



From vector to a scalar theory I

• In all of these theories light is treated as a scalar phenomenon.
• At boundaries the various components of the electric and magnetic 

fi ld l d th h M ll ti d t b t t dfields are coupled through Maxwell equations and cannot be treated 
independently. 

• We stay away from those situations when using scalar theory.
• Scalar theory yields correct values under two conditions:

– The diffracting aperture must be large compared with a 
wavelength.

– The diffracting fields must not be observed too close to the 
aperture.

• Our treatment is not good for some optical systems such as g p y
diffraction from 
– high-resolution gratings 
– Small pits on optical recording media
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Small pits on optical recording media
• Read Goodman 3.2 From a Vector to a Scalar Theory



From vector to a scalar theory II
F l t ti ti i di ith

, , , , ,

For electromagnetic waves propagating in media with 
the following properties, an scalar wave equation 
is obeyed by all components of the field vectors .x y z x y zE E E H H H

2 2
2

2 2

( , )( , ) 0

( ,

n u P tu P t
c t

u P t

∂
∇ − =

∂
) , , . is any of the scalar field components  at time 

Properties:
x y z t Depth of 

penetration in the 
media is few

1 2

1 2

( , ) ( , )
( , ) ( , )

Properties:
linear; if  and  are solutions to the wave euation, then  

 is a solution,
isotropic; properties are ind

u P t u P t
u P t u P tα β+

ependent of direction of polarization of the wave

media is few 
wavelengths. 
Not much effect on 
total wavefront 
passing through 
the aperture isotropic; properties are independent of direction of polarization of the wave,

homogeneous; permitivity is constant throughout the region of propagation,

nondispersive; permitivity is independent of frequency over the region of propagation,
ti ti bilit i l t 0nonmagnetic; magnetic permeability is equal to 

At the boundaries, the above criteria are not met and coupling betwen electric and 

magnetic components of the EM wave happens. 

μ
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We can use the scalar theory if the boundaries are small portion of the 

total area through which the wave is passing. 



The Helmholtz equation
( , )For a monochromatic wave the scalar field can be written asu P t

2

( )

( , )
( , ) ( ) cos[2 ( )] Re{ ( ) }
( ) ( )

For a monochromatic wave   the scalar field can be written as 
 where 

 space dependent part of the field

j t

j P

u P t
u P t A P t P U P e
U p A p e

πν

φ

πν φ −= − =

=
2  time dependent part of the j te πν−

, ,
field

 can be any of the space coordinates   or 
Substituting the scalar field in scalar wave equation  
P x y z

2 2
2

2 2

2 2 2
2 2

( , )( , ) 0

( ) j t
j t

n u P tu P t
c t

n U P e πν−

∂
∇ − =

∂
∂2 2

2 2

2 2
2

2

( )( ) 0

( 2 )( ) ( )

j t n U P eU P e
c t

n jU P U P e

πν

πν

− ∂
∇ − =

∂

⎛ ⎞−
∇ −⎜ ⎟
⎝ ⎠

2 2
2

2

(2 ) 20 with wavenumber j t nkπν πν π
λ

− = = =2c⎜ ⎟
⎝ ⎠

2

2 2( ) ( ) 0 .  time-independent Helmholtz equation

Complex amplitude of any monochromatic wave propagating in vacuum

c

k U P

λ

∇ + =
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Complex amplitude of any monochromatic wave propagating in vacuum 
or in homogeneous dielectric media has to obey the Helmholtz equation.



Gauss’s Theorem

Gauss's theorem: 
connecting surface integral and volume integral of a vector

total outflow of flux 
from the volume 

connecting surface integral and volume integral of a vector

V

dV d∇ =∫ ∫U U s
������

i i
net outflow

totalof flux per 
unit volume

                      
V S

dV d∇ =∫ ∫U U si i���
 outflow of flux

 from the surface 

Green's theorem is a corollary of Gauss's theorem
S

�����

Green s theorem is a corollary of Gauss s theorem
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Green’s Theorem: a mathematical tool
If and are two scalar functionsU G

( ) ( )
( ) ( )

( )

( )

If  and  are two scalar functions 
  -

U G
U G U G U G

G U G U G U

∇ ∇ = ∇ ∇ + ∇ ∇

∇ ∇ = ∇ ∇ + ∇ ∇

i i i

i i i( ) ( )
2 2

( )

( )
Assuming their first and second derivatives are continuous

G U G U G U

U G G U U G G U
U G

∇ ∇ = ∇ ∇ + ∇ ∇

∇ ∇ − ∇ = ∇ − ∇

i i i

i
, ,Assuming   their first and second derivatives are continuous 

over the volume  and on the surface 
U G

V
2 2( ) ( )

 enclosing the  S V

U G G U dV U G G U dV∇ ∇ − ∇ = ∇ − ∇∫∫∫ ∫∫∫i

2 2

( ) ( )

( ) ( )

Using the Gauss's theorem convert the volume integral on LHS 
V V

U G G U d U G G U dV∇ − ∇ = ∇ − ∇

∫∫∫ ∫∫∫

∫∫ ∫∫∫si( ) ( )

If we take the gradiant in the outward normal directi
S V

U G G U d U G G U dV∇ ∇ ∇ ∇∫∫ ∫∫∫s

||
on  the LHS 

can be written in a scalar form since  at every point.
n

n s
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2 2

||

( ) ( )

y p

 Green's theorem
S V

G UU G ds U G G U dV
n n

∂ ∂
− = ∇ − ∇ ←

∂ ∂∫∫ ∫∫∫



Physical meaning of the Green’s function I

Imagine an inhomogeneous linear differential euation
2

2 1 02

( ) ( ) ( ) ( )

( )

 

 is a driving force 

d U x dU xa a a U x V x
dx dx

V x

+ + =

( )

( )

 is the solution for a known set of boundary conditions (BC)

 is a solution to the 

U x

G x ( ) ( ')equation with  the impulse driving force 

and the same BCs

V x x xδ→ −

( ) ( )

( ) ( ') ( - ') '

and the same BCs. 
 is an impulse response and we can expand  in terms of  

       

G x U x Gs

U x V x G x x dx= ∫( ) ( ) ( )

( ) known as the Green's functionG x
∫

( )

 of the problem. 
 may be regarded as an auxiliary function chosen cleverly to G x
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solve our problem.



Physical meaning of the Green’s function II

2 ( )
Imagine an oscillator 

d U x
2 02

( ) ( ) ( )

( )
( )

 is a driving force 
is the solution for a known set of boundary conditions (BC)

d U xa a U x V x
dx

V x
U x

+ =

( )

( )

( ) ( ') ( - ') '

 is the solution for a known set of boundary conditions (BC)

 is impulse response 

      

U x

G x

U x V x G x x dx= ∫ '
( ) ( ) ( )

The solutio
x∫

n is convolution of the driving force with the impulse respons 

of the system. 
In case of diffraction application of Green's theorem will yeild different 
variations of the diffraction theory based on the choice of Green's function.
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Application of Green’s Theorem in scalar 
diffraction theorydiffraction theory
Goal: calculation of the complex disterbance  at an observation point 
i i G ' Th

U

0

2 2( ) ( )

in space, , using Green's Theorem.

 
S V

P
G GU G ds U G G U dV
n n

∂ ∂
− = ∇ − ∇

∂ ∂∫∫ ∫∫∫
Green's theorem is the prime foundation of the scalar diffraction theory.

To apply it to the diffraction problem we need to have a proper choice of
1) ili f ti (G ' f ti )

0

         1) an auxiliary function  (Green's function)
         2) a close surface  

 is an arbitrary point o

G
S

P f observation
n

P1V

0 y p

1

0( )
 is an arbitrary point on the surface 

We want solution of the wave equation 
P S

U P
S

P0
. ro1
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0at  in terms of the value of the solution 
and its derivatives on the surface .

P
S



The integral theorem of Helmholtz & Kirchhoff
1) Choice of Green's function: a unit-amplitude spherical wave expanding

01

0 1 1
01

( )

1) Choice of Green s function: a unit-amplitude spherical wave expanding 

about point  (impulse).  has to be a solution of the wave equation. At :   

2) Treating the discontinuity at

jkreP G P G P
r

=

0  by isolating it with P Sε P) g y 0

34' '
3

y g

3) New surface & volume: ;  

4) Use Green's theorm with Green's function of 

S S S V V

ε

ε πε= + = −
V’

P1

r01
01

2
1

01

( ) ) 02 and Helmholtz equation (

Note both  and  are the soluti

jkreG P k U
r

G U

= ∇ + =

ons of the same 

S

S

P0
.ε n

0( )
0

wave euation. After all  is the impulse response and 
 is the disturbance. We want to find  or field after the aperture.  

At the linit of  we get (follow from Goodman page 41)

G

U U P
ε → :

Sε n

( )
01 01

0
01 01

1 -
4

   

This result is known as the integral thorem of Helmholtz and Kirchhoff. It has important role in 

jkr jkr

S

U e eU P U ds
n r n rπ

⎧ ⎫∂ ∂
= ⎨ ⎬∂ ∂⎩ ⎭

∫∫
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( )0development of the scaler theory of diffraction. , U P 0the field at point  is expressed in terms 

of the "boundary values" of the wave on any closed surface surrounding that point. 

P



Fresnel-Kirchhoff diffraction formula I

0

Problem: diffraction of light by an aperture in an infinite opaque screen.
The field  at  behind the aperture is to be calculated.

is the distance from aperture to observation point
U P

r01  is the distance from aperture to observation point. 
Assumptions:
r

01 011/  and 
Choice of : a plane surface plus a 

r k r

S

λ>> >> S2

S1

R

Wave 
impinging

01

1 2spherical cap 

Choice of Green's function: 
jkr

S S S

eG
r

= +

=
P0
.

r01
n

P1

∑
R

( )

01

1

We apply the Helmholtz-Kirchhoff integral theorem 
r

U GU P G U ds∂ ∂⎛ ⎞= −⎜ ⎟∫∫ ( )to find U P( )
1 2

0 4 S S

U P G U ds
n nπ +

= −⎜ ⎟∂ ∂⎝ ⎠∫∫ 0( ) to find  

Somefeld radiation condition: if the disturbance  vanishes 
at least as fast as a diverging spherical wave then:

U P

U
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2 0( )
at least as fast as a diverging spherical wave then: 
as  contribution of  to  vanishes.R S U P→∞



Kirchhoff’s Boundary conditions

,
The screen is opaque and the aperture is shown by 
1) Across the surface  the field and its derivatives are exactly 

f

Σ
Σ

1

the same as they would be in the absence of the screen.  

2) Over the portion of S  that lies in the geometrical shadow 
of the screen the filed and its derivative are identically zero

( )0
1

4

of the screen the filed and its derivative are identically zero. 

U GU P G U ds
n nπ Σ

∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠∫∫
S

Condition 1 is not exactly true since close 
to the boundaries the fie

Σ ⎝ ⎠

ld is disturbed. 

S2

∑

S1

R

Wave 
impinging

Condition 2 is not true since the 
shadow is never perfect and some 
field will extend behind the walls

P0
.

r01
n

P1

∑

14

field will extend behind the walls. 
For  this is an OK approximation.λΣ >> 1

2

2

:

0

On these portions of S
U UU
n n

∂ ∂
= = =

∂ ∂



Fresnel-Kirchhoff diffraction formula II
S2

S

P0
.

n
∑

S1

R

( )
01

01

0 01

1/

1 cos( , )

Withe above assumptions and  we arrive at

 
jkr

k r

e UU P jkU n r ds

>>

⎧ ⎫∂⎡ ⎤= −⎨ ⎬⎢ ⎥∂⎣ ⎦∫∫
K K

P0r01P1

( )

21

0 01
01

( , )
4

If the aperture is illuminated by a single spherical wave
jkr

j
r n

Ae

π ∑
⎨ ⎬⎢ ⎥∂⎣ ⎦⎩ ⎭

∫∫

f1
21

( ) ,2 located at point P  aAeU P
r

=

21

21 1t a distance r  from P . 

If  we can show that (problem 3.3)r λ>>

⎧ ⎫( )
21 01( )

01 21
0

21 01

cos( , ) cos( , )
2

The Fresnel-Kirchhoff diffraction formula that 
h ld l f i

jk r r n r n rA eU P ds
j r rλ

+

∑

⎧ ⎫−⎡ ⎤= ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∫∫

K K K K

l i t ill i ti

 
���������������������������������������

holds only for a single point source illumination

0 2

The Fresnel-Kirchhoff diffraction formula 
is symmetrical with respect to P  and P . 

P0

.
r01n P1

P2

r21
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0 A point source at P will produce the same eff .2ect at P
This result is known as: reciprocity theorem of Helmholtz



Huygens’ wavelets
0Huygens-Fresnel theory: the light disturbance at a point arises fromP0Huygens Fresnel theory: the light disturbance at a point  arises from 

the superposition of secondary waves that produced from a surface 
situated between this point and the light source.

P

If we rewrite

( )
21 01( )

01 21
0

21 01

cos( , ) cos( , )
2

 
jk r r n r n rA eU P ds

j r rλ

+

∑

⎧ ⎫−⎡ ⎤= ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∫∫

K K K K

( )
01

21 01

0 1
01

2

'( )  where 
jkr

j r r

eU P U P ds
r

λ

∑

⎣ ⎦⎩ ⎭

= ∫∫

21
01 2

1
21

cos( , ) cos( ,1'( )

illuminating wavefront Observation angle
jkr n r n rAeU P

j rλ
⎡ ⎤ −

= ⎢ ⎥
⎣ ⎦

���� �������K K K K
1)

2

Illumination angle⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

�������

⎣ ⎦

0

1

( )
'( ).

Seems like  arises from sum of infinite fictitious sources with 
amplitudes and phases expressed by  

U P
U P

⎢ ⎥
⎣ ⎦
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1

We used point source to get this result but it is possible to generalize 
this result for any illlumination by using Rayleigh-Sommerfeld theory.



The Rayleigh-Sommerfeld Formulation of 
diffractiondiffraction
Potential theory: If a two-dimensional potential function and its normal

derivaive vanish together along any finite curve segment then thederivaive vanish together along any finite curve segment, then the 
potential function must vanish over the entire plane.
This is also true for solution of a three-dimensional wave equation. 

1) The Kirchhoff boundary conitions suggests that the diffracted field 
t b h b hi d th t N t tmust be zero everywhere behind the aperture. Not true.

2) Also close to aperture the theory fails to produce the observed
diffraction fielddiffraction field.
Inconsistencies of the Kirchhoff theory were removed by Sommerfeld. 
He elliminated the need of imposing boundary values on the 
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disturbance and its derivative simultaneously.



An alternative Green’s function I
Ob d fi ld t th i t f th i id t fi ld d it l d i ti

1
0

1( )
2

Observed field strength in terms of the incident field and its normal derivatives: 

       (Fresnel-Kirchhoff diffraction formula)
S

U GU P G U ds
n nπ

∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠∫∫

Conditions for validity:
1) The scalar theory holds1) The scalar theory holds
2) Both  and  are solutions of the homogeneous scalar wave equation 
3) The sommerfeld radiation condition holds i.e. if the disturbance  
vanishes at least as fast as a diverging spherica

U G
U

l wave then:vanishes at least as fast as a diverging spherica

2 0( )
l wave then: 

as  contribution of  to  vanishes.R S U P→∞

1/ ,
If the Green's function of Kirchhoff theory was modified so that either  
or  vanished over entire surface  then there is no need to im

G
G n S∂ ∂

/ .
pose 

boundary condtions on both  and  U U n∂ ∂
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An alternative Green’s function II
S f ld d th t G ' f ti th t t th it i i

0

Somerfeld argued that one Green's function that meets these criteria is 
composed of two identical point sourcers at two sides of the aperture, 

mirror image of each other, oscillating with a 180  phase difference:
01 01

01

1
01

( )

0Now on the plane of aperture

jkr jkre eG P
r r

G

− = −

=

�

�

0

0

1( )
2

Now  on the plane of aperture. 
Kirchhoff's BC may be applied only on 

S

G
U

U GU P G U ds

=

∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠∫∫
Σ1

1
0

1 1 2

0

2

1( ) 0we need 

S n n
S

U GU P G U ds

π ⎜ ⎟∂ ∂⎝ ⎠
= Σ + Σ +Σ

∂ ∂⎛ ⎞= − =⎜ ⎟
⎝ ⎠

∫∫

∫∫

01r�
P0

.
n
P1

.
0P� Σ

01r
1 2

0( )
2 n nπ Σ +Σ ⎜ ⎟∂ ∂⎝ ⎠∫∫

1
| 0 0

( ) |

1 2 so if we require only  on  and 

then does not need to be zero to make

SG U

U U P

= = Σ Σ

∂

Σ2
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1 20( ) |then  does not need to be zero to make 

With the new BC on the U only there is no conflict with 
the potential theorem.

U P
n Σ +Σ∂



The Rayleigh-Sommerfeld diffraction 
FormulaFormula

01 01

With the Green's function 
jkr jkr

G

e e
−

�

( )
01

1
01

0

( )

the  takes the form 

e eG P
r r

U P

− = −
�

( )

( )
01

1

0

0 1 01
01

1 ( ) cos( , )  or  
jkr

I S

eU P U P n r ds
j rλ

= ∫∫
K K

01

/
Assuming 
Now applying the Kirchhoff BC only on  and not on  we g

r
U U n

λ>>

∂ ∂ et
jkr

( )
01

0 1 01
01

1 ( ) cos( , )

And will not vanish on the other side of the aperture

jkr

I
eU P U P n r ds

j r
U

λ Σ
= ∫∫

K K
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And  will not vanish on the other side of the aperture.U



Rayleigh-Sommerfeld Diffraction formula
With the Green's function two sources oscillating in phase with each otherG

( )
01 01

01

1 0
01

( )

With the Green s function  two sources oscillating in phase with each other

       the  takes the form 
jkr jkr

jk

G

e eG P U P
r r

+

+ = +
�

�

( )
01

1
0

01

( )1
2

  

Now for the spacial case illumin

jkr

II
U P eU P ds

n rπ Σ

∂
=

∂∫∫
ation: 

01r�
P
..

P�21

2 1
21

( )

/

a diverging spherical wave from point :  

We apply the Kirchhoff BC only on  and not on  and 

jkreP U P A
r

U U n

=

∂ ∂

P0r01n P1
0P

( )
21 01( )

0 01
21 01

cos( , )

using  we get
jk r r

I

G

A eU P n r ds
j r rλ

−

+

Σ
= ∫∫

K K

and and  gives

II

G

U

+

( )
21 01( )

0 21
21 01

cos( , )
jk r rA eP n r ds

j r rλ

+

Σ
= ∫∫

K K

21

21 01
0

21

21

90 .Where the angle between  and  is greater than 
This is Rayleigh-Sommerfeld Diffraction formula where we assumed 

n r
r λ>>

G G



Comparison of the Kirchhoff and Rayleigh-
Sommerfeld (R-S) theoremSommerfeld (R S) theorem

01 01 01 01 01

01 01

1 1 1
01 01 01

( ) ; ( ) , ( )

Green function of theG f f S f f

        
jkr jkr jkr jkr jkr

K
e e e e eG P G P G P
r r r r r− += − = + =

� �

� � ���	��
���������	��������

Green function of theGreen functions of the Sommerfeld formulation
Kirchhoff formulation

On th 2 2e surface  we can show that   and  K K
GG G G
n
−

+
∂

Σ = =
∂

( )

( )

0
1

4
1

For the Kirchhoff theory:     K
K

GUU P G U ds
n n

G
π Σ

∂∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠
∂−

∫∫

∫∫( )

( )

0

0

1
2

For the R-S theory:             

                               

K
I

II

GU P U ds
n

U P

π Σ

∂
=

∂∫∫
1

2
 K

U G ds
nπ Σ

∂
=

∂∫∫

0 0
0

2

( ) ( )( )
2

We can see that 

                               I II

n

U P U PU P

π Σ ∂

+
=

∫∫

22

0( )
2

Summary: the Kirchhoff solution is the arithmatic average of the two 

Rayleigh-Sommerfeld solutions.



Comparison of the Kirchhoff and R-S theory
Kirchhoff theory:

( )
21 01 21 01( ) ( )

01 21
0

21 01 21 01

cos( , ) cos( , )
2

Obliquity factor 

 
jk r r jk r rn r n rA e A eU P ds ds

j r r j r r

ψ

ψ
λ λ

+ +

∑ ∑

−⎡ ⎤= =⎢ ⎥⎣ ⎦∫∫ ∫∫
����������K K K K

( )
21 01

21 01 21 01

( )

0 01
21 01

cos( , )
Obliquity fac

R-S theory: 
jk r r

I

j j

A eU P n r
j r rλ

+

⎣ ⎦

= K K 21 01( )

21 01

tor 
jk r rA eds ds

j r r

ψ

ψ
λ

+

Σ Σ
=∫∫ ∫∫

����

( )
21 01 21 01( ) ( )

0 21
21 01 21 01

cos( , )
Obliquity factor 

                  
jk r r jk r r

II
A e A eU P n r ds ds
j r r j r r

ψ

ψ
λ λ

+ +

Σ Σ
= =∫∫ ∫∫

����K K

01r�
P0

.
r01n P1

.
0P�P0

.
r01n P1

P2

r21 .
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Comparison of the Kirchhoff and R-S theory
Obliquity factor of both Kirchhoff and R-S theory

01 21

01

1 [cos( , ) cos( , )]
2
cos( ,

   Kirchhof theory

= )                    First R-S solution

n r n r

n rψ

⎧ −⎪
⎪
⎨

K K K K

K K

⎫
⎪
⎪
⎬

⎪ ⎪
21cos( , )              Second R-S solution  n r− K K

When a point source is at a very far distance

⎪ ⎪
⎪ ⎪
⎩ ⎭

⎧ ⎫

P0
. r01

n
P1P2

r21 .
θ

1 [1 cos ]
2
cos(

              Kirchhof theory

= )                   First R-S solution
1 Second R S solution

θ

ψ θ

⎧ ⎫+⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪1                     Second R-S solution

In sum

⎪ ⎪
⎪ ⎪
⎩ ⎭

mary: for small angles all three solutions are identical

When observation point or illumination source areWhen observation point or illumination source are 
far away, the angles are small.
R-S solution requires the diffracting screens be planar.
Kichhoff solution is not limitted to planar surfaces

01r�
P0
.r01

n
P1

.
0P� θ

24

Kichhoff solution is not limitted to planar surfaces.
For most applications both are OK. 
We will use the first R-S solution for simplicity.



Huygens-Fresnel Principle
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Generalization to Non-monochromatic waves I  

{ }2( ) R ( )

We generalize the R-S's first solution to nonmonochromatic waves (chromatic?)
Monochromatic time function of the disturbance: 

j tP t U P πν−{ }2

1

( , ) Re ( )

( , )Time dependent chromatic functions:  at the aper

j tu P t U P e

u P t

πν=

0

1 0

, ( , )

( , ), ( , ) ' -

ture   observation point
  in terms of their Fourier transforms. Let's change the variable 

u P t

u P t u P t ν ν=

2 2 '
1 1 1

2

( , ) ( , ) ( , ') 'j t j t

j t

u P t U P e d U P e dπν πν

πν

ν ν ν ν
∞ ∞

−

−∞ −∞

∞

= = −∫ ∫

∫ 2 'j tπν
∞

∫2
0 0( , ) ( , ) (j tu P t U P e d U Pπνν ν

−∞

= =∫

{ } { }

2 '
0 , ') '

( ) ( ) ( ) ( )

monochromatic complex amplitudes elementary of the disturbance function of at frequency ' freuency '

Wh d

j te d

U P P U P P

πν

ν ν

ν ν−

−∞

−∫ �	
��	�


F F{ } { }1 1 0 0( , ) ( , ) ( , ) ( , )Where   and 
 
We see that the cromatic f

U P u P t U P u P tν ν= =F F

unction is sum 
0( , )u P t

1( , )u P t

01r� P0
.r01P1

.
0P� θ
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of the monochromatic functions over 
different frequencies.

n



Generalization to Non-monochromatic waves II
2 2 '( ) ( ) ( ') 'j t j tu P t U P e d U P e dπν πνν ν ν ν

∞ ∞
−= =∫ ∫1 1 1

2 2 '
0 0 0

( , ) ( , ) ( , )

( , ) ( , ) ( , ') '
l t

j t j t

u P t U P e d U P e d

u P t U P e d U P e dπν πν

ν ν ν ν

ν ν ν ν

−∞ −∞

∞ ∞
−

= = −

= = −

∫ ∫

∫ ∫ �	
��	�

0( , )u P t

1( , )u P t
� P

.r01P1
.
P� θelementary complex amplitude function of of the disturbance freuency 'at frequency '

Now
νν

−∞ −∞
	

( )

 we introduce the R-S first solution for the diffracted field
U P

01r P0
n
P10P θ

( )

1

01 0121

( )

0 01 1 01
21 01 01

2 '

1 1cos( , ) ( ) cos( , )
Obliquity factor 

U P

jkr jkrjkr

I

j r

Ae e eU P n r ds U P n r ds
j r r j r

ψ

πν

λ λΣ Σ
= =∫∫ ∫∫

��
����K K K K

/V

( )
2 '

0 1
', ' ( , ')

j reU P j U P
V

πννν ν− = − −
01 /

01
01

cos( , ) / where 

This is one frequency component. Summing over all of them we get:

V

n r ds V c n
rΣ

=∫∫
K K

( )
012 ' /

0 1 01
', ( , ') cos( , )

Complex amplitude at each frequency

j r Veu P t j U P n r ds
V r

πνν ν
Σ

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∫∫

����� �
K K 2 ' '

Elementary 
function at 
that frequency

j te dπν ν
∞ −

−∞∫
��� ���������

��
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01V r⎣ ⎦

( )
012 '( )01

0 1
01

cos( , ), 2 ' ( , ') '
2

rj t
Vn ru P t j U P e d ds

Vr
πν

πν ν ν
π

− −∞

Σ −∞
= − −∫∫ ∫

K K



Generalization to Non-monochromatic waves III
Next we want to relate the disturbance at the observation point

( )
012 '( )01

0 1
01

cos( , ), 2 ' ( , ') '
2

Next we want to relate the disturbance at the observation point

t th di t b t th t l ti

rj t
Vn ru P t j U P e d ds

Vr
πν

πν ν ν
π

− −∞

Σ −∞
= − −∫∫ ∫

K K

( )P

2 '
1 1( , ) ( , ') '

to the disturbance at the aperture location

j tu P t U P e dπνν ν−= −  we use the identity
∞

−∞
∫

0( , )u P t
1( , )u P t

01r� P0
.r01

n
P1

.
0P� θ

2 '
1 1( , ) ( , ') 'j td du P t U P e d

dt dt
πνν ν

∞

∞
−

−∞

∞

= −∫

( )

2 '
1 1( , ) 2 ' ( , ') 'j td u P t j U P e d

dt

u P t

πνπν ν ν
∞

−

−∞

= − −∫
01 01cos( , ) ( )n r rd u P t ds∫∫

K K
( )0 ,

0

The wave disturbance 
at P  is linearly proportional
to the time derivative of the 
disturbance

u P t 01 01
1

01

( , )
2

1

Incident wave at Over all angles the "retarded" time
or the time that the  at eah point P
wave was generatedon the aperture

u P t ds
Vr dt VπΣ

= −∫∫��	�
 ��	�
��	�
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wave was generatedon the aperture

In summary the results of the diffration theory for the monochromatic 

waves is applicable to the more general case of the chromatic waves.



The angular spectrum of plane a wave I
Next we want to formulate the diffraction theory in a framework of 

linear, invariant systems.

Assume a transverse monochomatic wave traveleing in directionz+
( , )

Assume a transverse monochomatic wave traveleing in  direction
incident on a transverse    plane 
Acro

z
x y

+

0 ( , ,0)ss the  plane  z U U x y= =
( , , )

( , , ) 0

( , ,0)

Across the  plane    
Objective: to calculate the resulting field  down the road 

as a function of 

z z U U x y z
U U x y z z

U x y

= =
= >

( )

0 ( , ;0) ( ,FT of the  at  plane: X Y

y

U z A f f U x= = 2 ( )

2 ( )

,0)

( , ,0) ( , ;0)And  

X Y

X Y

j f x f y

j f x f y
X Y X Y

y e dxdy

U x y A f f e df df

π

π

∞ − +

−∞

∞ +=

∫ ∫
∫ ∫( , , ) ( , ; )

( , ;0)
What is the physical meaning of these components?

So far we have looked at  as the spatial frequency spectrum 

o

X Y X Y

X Y

y f f f f

A f f

−∞∫ ∫ ��	�


f the disturbance
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of the disturbance. 
What is the direction of propagation of each these components? 



C id i l l ti i di ti f k

Physical interpretation of angular spectrum

. 2( , , ) ( );

2

Consider a simple plane wave propagating in direction of k:  

  where  and jP x y z e xx yy zz x y zπ α β γ
λ

= = + + = + +k r r k� � � �� �

2 2 2

2, . |

1

 , and  are the direction cosines of  Also |  

Using , betwe

πα β γ
λ

α β γ

=

+ + =

k k

2 /
en the direction cosines we rewrite 

k λ λ ( ) ( )

2 2

2 2

2 2( ) 2 ( ) 2 1.

2 / ; ; 1
| | 2 /

( , , )

   

 X y X Y

x x
X Y Z X Y

x

j x y j z j f x f y j f fjk r

k f f f f f

P x y z e e e e e
π πα β γ π πλ λ

π λ λα λ β λ γ λ λ λ
π λ λ

+ + − −

= = = = = = = − −

= = =

k

x( , , )
/ , / 0

( ,

Now with    we can write X Y z

X Y

x y e e e e e
f f f

A f f

α λ β λ= = =
2 ( );0) ( , ,0)  as X Yj f x f yU x y e dxdyπ∞ − +

−∞
= ∫ ∫

cos-1γ

cos-1α

2
, ;0 ( , ,0)

( , ,0).is the angular spectrum of the disturbance  

j x y
A U x y e dxdy

U x y

α βπ
λ λα β

λ λ

⎛ ⎞− +∞ ⎜ ⎟
⎝ ⎠

−∞

⎛ ⎞ =⎜ ⎟
⎝ ⎠ ∫ ∫

cos-1β

cos 1γ

z
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( )g p
In summary this results shows that: 

each spatial frequency

y

 component is propagating at a different angle.

β
y



Propagation of the angular spectrum I
( )C id th l t f th l ll l tU

2

( , )

; ( )

Consider the angular spectrum of the  across a plane parallel to  
at a distance  from it: 

j x y

U x y
z

A z U x y z e dxdy
α βπ
λ λα β ⎛ ⎞− +∞ ⎜ ⎟

⎝ ⎠⎛ ⎞ =⎜ ⎟ ∫ ∫, ; ( , , )

Our goal is to find the effects of the wave propagati

A z U x y z e dxdy
λ λ −∞⎜ ⎟

⎝ ⎠ ∫ ∫

;0 ;

on on the angular spectrum 

of the disurbance or the relationship of andA A zα β α β⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

2

, ;0 , ;

( , , ) , ;

of the disurbance or the relationship of  and 

We start from 
j x y

A A z

U x y z A z e d d
α βπ
λ λ

λ λ λ λ

α β α β
λ λ λ λ

⎛ ⎞+∞ ⎜ ⎟
⎝ ⎠

−∞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫

 must satisfy the Helmholtz equatU 2 2

22
2 2

0

2

ion  wherever there is no source.
The result is that  must satisfy the following differential equation. 

U k U
A

d α β π α β

∇ + =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤2 2
2

2, ; 1 , ; 0

coefficient

The soluti

d A z A z
dz

α β π α βα β
λ λ λ λ λ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤+ − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠����	���


on can have the form: 
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2 22 1
, ; , ;0

 

j z
A z A e

π α β
λα β α β

λ λ λ λ

⎛ ⎞− −⎜ ⎟
⎝ ⎠⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠



2⎛ ⎞

Propagation of the angular spectrum II
2 22 1

, ; , ;0

For this solution two cases are recognized: 

j z
A Z A e

π α β
λα β α β

λ λ λ λ

⎛ ⎞− −⎜ ⎟
⎝ ⎠⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

2 2 11) When  (true for all direction cosines) the effect of propagation
on the angular spectrum is simply 

α β+ <

2 2

a change in phase of each component.

2) Wh ( d l th di ti i ff tβ β2 2 1

Four

2) When  (  and  are no longer the direction cosines effect 
of aperture is present here) the angular spectrum has the form:

α β α β+ >

ier transform of
a field distributiion

, ; , ;0A z Aα β α β
λ λ λ λ

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2 22 1

2 22, ;0 1

A real number
 a field distributiion 
on which BCs of the 
aperture is imposed

; 
j z

ze A e

π α β
λ

μα β πμ α β
λ λ λ

⎛ ⎞
⎜ ⎟
⎜ ⎟− −
⎜ ⎟
⎜ ⎟ −⎝ ⎠ ⎛ ⎞= = + −⎜ ⎟

⎝ ⎠

��������
����

λ λ λ λ⎝ ⎠ ⎝ ⎠
Since  is a positive real number, thz

λ λ λ⎝ ⎠
e wave components are attenuating 

as they propagate. They are also called evanescent waves.
Si il t th f i id th i t ff f
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Simmilar to the case of microwave waveguides there is a cutoff frequency.
Below cutoff frequency, these evanescent waves carry no energy away

from the aperture. 



⎛ ⎞

Propagation of the angular spectrum III
2 22 1

2

, ; , ;0 ( , , )Substituting  in the  we get:
j z

j x y

A Z A e U x y z
π α β
λ

α βπ

α β α β
λ λ λ λ

β β

⎛ ⎞− −⎜ ⎟
⎝ ⎠

⎛ ⎞+⎜ ⎟

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞

2 2

2

2 1 2

( , , ) , ;

( ) 0

j x y

j z j x y

U x y z A Z e d d

U A d d

π
λ λ

π α βα β π
λ λ λ

α β α β
λ λ λ λ

α β α β

+∞ ⎜ ⎟
⎝ ⎠

−∞

⎛ ⎞ ⎛ ⎞− − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟

∫ ∫
∞

∫ ∫( , , ) , ;0U x y z A e e d dλ λ λβ β
λ λ λ

⎝ ⎠ ⎝ ⎠⎛ ⎞= ⎜ ⎟
⎝ ⎠

2 21 1             x y

λ−∞

⎧ + <
⎪
⎪

∫ ∫

( )2 2 2 21/ 2 1
0

         
             

circ x y x y
otherwise

⎪
⎪+ = + =⎨
⎪
⎪⎩

2 22 1 2
2 2( , , ) , ;0

j z j x y
U x y z A e circ e d d

π α βα β π
λ λ λα β α βα β

λ λ λ λ

⎛ ⎞ ⎛ ⎞− − +∞ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−∞

⎩

⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ ∫
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No angular spectrum contribute to U
2 2

( , , )

1

 beyond the evanescent 

wave cutoff  . 

x y z

α β+ <



Physical meaning of cutoff frequency

2 2

( , , )

1

No angular spectrum contribute to  beyond the evanescent 

wave cutoff  .

U x y z

α β+ <

No imaging system can resolve a periodic structure that its period is 
less than the wavelength of the light used.

22 k⎛ ⎞⎛ ⎞xk
22

2 2 2 21 | | | |  or .

Near-Field imaging couples to the evanescent waves of a very fine 

y
x y

k
k k k x y

k k
λ

⎛ ⎞⎛ ⎞ + < → + < + >⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

structure and recovers the phase information that would be lost otherwise.
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Effects of a diffracting aperture on the 
angular spectrum Iangular spectrum I

0
Now an infinite opaque screen containing a diffracting structure is placesd 
in the  plane. 
G l fi d ff t f th th l t f th di t b

z =
Goal: find effects of the screen on the angular spectrum of the disturbance. 

Amplitude transmitance functi
( , ;0)

on: 
U x y( , ;0)( , )

( , ;0)
( , ;0) ( , ) ( , ;0) take the Fourier transform of the both sides 
d th f l ti th

t
A

i

t A i

U x yt x y
U x y

U x y t x y U x y

=

=

,

and use the frequency convolution theorem: 

tA α β
λ λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

N, ,
Convolved

 iA Tα β α β
λ λ λ λ

⎛ ⎞ ⎛ ⎞= ⊗⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠� 
 � 
 � 


Angular spectrum
of the transmitted 
disturb

with
Angular spectrum A second angular 
of the incident spectrum that is a 

ance disturbance result of the diffracting
structure 

β⎛ ⎞

��	�
 ��	�
 ��	�


2j x yα βπ ⎛ ⎞+⎜ ⎟
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, ( ,where  AT t x yα β
λ λ

⎛ ⎞ =⎜ ⎟
⎝ ⎠

2
)

( , )

 

is the Fourier transform of the  

j x y

A

e dxdy

t x y

βπ
λ λ

− +∞ ⎜ ⎟
⎝ ⎠

−∞∫ ∫



Effects of a diffracting aperture on the 
angular spectrum II
Example: for a unit amplitude plane wave illuminating the diffracting 
structure the angular spectrum of the input is a delta function:

angular spectrum II

, , , ,

structure, the angular spectrum of the input is a delta function:

         i t iA A A Tα β α β α β α β αδ
λ λ λ λ λ λ λ λ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = ⊗⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, β
λ λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

Fourier transform of the
Transmitted angular amplitude transmitance 
spectrum function of the aperture

A T Tα β α β α β α βδ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⊗⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

���� ����

, , , ,

If the diffracting structure i

tA T Tβ β β βδ
λ λ λ λ λ λ λ λ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⊗ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

s an aperture that limits the extend of the 

2
, ( , )

field distribution, 
j x y

AT t x y e dxdy
α βπ
λ λα β

λ λ

⎛ ⎞− +∞ ⎜ ⎟
⎝ ⎠⎛ ⎞ =⎜ ⎟

⎝ ⎠ ∫ ∫

36

, ( , )

the angular spectrum of the disturbance will be broadened.

A y y
λ λ −∞⎜ ⎟

⎝ ⎠ ∫ ∫



The propagation phenomenon as a linear 
filter Ifilter I

0
0 ( , ,0)

Consider propagation from plane  to the plane  
Across the  plane 

z z z
z U U x y

= =
= =

( , , )Across the  plane   
Goals: a) to show that the propagation phenomenon acts like a 

linear

z z U U x y z= =

space-invariant suystem               linear space-invariant suystem.
           b) find the system's transfer function  
The system is linear since it is governed by a linear wave equation or 
considering the superposition integral (R-S first sol

01 01

010 1 1
1 1( ) ( ) cos( , ) ( ) cos

ution).
jkr jkr

I
e eU P U P n r ds U P ds

j r j r
θ

λ λ
= =∫∫ ∫∫

G G

01

01 01

0 0 1 1 0 1
01

1( ) ( , ) ( ) ( , ) cos     with     
jkr

j r j r

eU P h P P U P ds h P P
j r

λ λ

θ
λ

Σ Σ

Σ

= =∫∫
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To establish the space-invariance we need to derive the transfer function 
of the system and show that the mapping is space-invariant. 



Transfer function of the linear invariant systems
{ }( ) ( action of a linear operator on a inp tS{ }2 2 2 1 1 1

2 2 2 1 2 2

( , ) ( ,

( , ) ( , ) ( , ; , )

action of a linear operator on a input

 h is the impulse response

g x y S g x y

g x y g h x y d dξ η ξ η ξ η
∞

−∞

=

= ∫ ∫
2 2 1 1

2 2 2 2

( , ; , ) { ( ; )}
( , ; , ) ( , )  for linear invariant sy

h x y S x y
h x y h x y

ξ η δ ξ η
ξ η ξ η

= − −
= − − stems

2 2 2 1 2 2 1 1( , ) ( , ) ( , ) *
Object function Impulse response 

of the system 

g x y g h x y d d g h g hξ η ξ η ξ η
∞

−∞
= − − = = ⊗∫ ∫ ������ �����������

2 1( , ) ( , ) ( , )
Take Fourier transform

f f
X Y X Y X YG f f H f f G f f=

Where H is the Fourier transform of
2 ( )( , ) ( , )

the impulse response.
X Yj f f

X YH f f h e d dπ ξ ηξ η ξ η
∞ − +

−∞
= ∫ ∫
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And it is called transfer function of the system that indicates 
effects of the system in the freuency domain. 



To establish the space-invariance we need to derive the transfer function 
Propagation phenomenon as a linear filter II

( , ;0) ( , ,0)

of the system and show that the mapping is space-invariant.
Let  be spatial spectrum (Fourier transform) of  X YA f f U x y 0

( ; ) ( )
at 

Let be spatial spectrum (Fourier transform) of at
z

A f f z U x y z z z
=
=

2 1

( , ; ) ( , , )
( , ) ( , ) ( , )

( , ; ) ( , ) ( , ;0)

Let  be spatial spectrum (Fourier transform) of  at 
So following  and 

 =  we can see H connects the two frequency 

X Y

X Y X Y X Y

X Y X Y X Y

A f f z U x y z z z
G f f H f f G f f

A f f z H f f A f f

=
=

spect
2 22 1 2

2 2( , , ) , ;0

rums before propagation and after the propagation. We got

 
j z j x y

U x y z A e circ e d d
π α βα β π
λ λ λα β α βα β

λ λ λ λ

⎛ ⎞ ⎛ ⎞− − +∞ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−∞

⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ ∫

,with  X Yf f

λ λ λ λ
α β
λ λ

⎝ ⎠

= =

( )2 22 1 ( )j f f zπ λ λ⎛ ⎞∞
⎜ ⎟( ) ( )2 2( , , ) , ;0 ( )

Imposes the ba

X Y X YU x y z A f f circ f fλ λ= +
( ) ( )1 ( ) 2

ndwidth limitation
associated with evanescent waves

X Y
X Y

j f f z j f x f y
X Ye e df df

λ λ πλ
− −⎜ ⎟ +⎝ ⎠

−∞

∞

∫ ∫

∫ ∫
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2 ( )( , , ) ( , ; )

( , ; ) , ;0

 comparing two equations shows:X Yj f x f y
X Y X Y

X Y X Y

U x y z A f f z e df df

A f f z A f f

π∞ +

−∞
=

=

∫ ∫

( )
( )2 22 1 ( )2 2( )

X Yj f f z

X Ycirc f f e
π λ λ
λλ λ

⎛ ⎞− −⎜ ⎟
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Propagation phenomenon as linear filter III
( ) ( )

( )2 22 1 ( )2 2( ) 0 ( )
X Y

zj f f
A f f A f f i f f

π λ λ
λλ λ

⎛ ⎞− −⎜ ⎟
⎝ ⎠+( ) ( )

( )
( )

2 2

2

2 1 ( ) 2 2

( , ; ) , ;0 ( )

And the transfer function is then

X Y

X Y X Y X Y

zj f f

A f f z A f f circ f f e λ

π λ λ
λ

λ λ ⎝ ⎠

⎛ ⎞− −⎜ ⎟
⎝ ⎠

= +

⎧
⎪ ( )

( )
( ) 2 2( ) /( , )

0

    

                              otherwise
This show

X Yj f f

X YX Y
e f fH f f

λ λ λ λ
⎜ ⎟
⎝ ⎠⎪ + <1= ⎨

⎪⎩
s that the propagation phenonmenon can be considered asThis show

-1

s that the propagation phenonmenon can be considered as 
a linear, dispersive spatial filter with a finite bandwidth.

Transmission is zero outside the circular region of radius (in spatial λ
frequency space)
Its transfer function is exponential.
Within the circular frequency bandwidth the modulus (or amplitude) ofWithin the circular frequency bandwidth the modulus (or amplitude) of 
the function is 1, but frequency dependent phase shifts are introduced.
Phase dispersion

0 0
 is largest at high spatial frequencies (below the cutoff)

A d th h di i i hf f
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0 0As  and  then phase dispersion vanishes.
For a fixed spatial frequency pair,  and : 
the phase dispersion increases as  increases

X Y

X Y

f f
f f
z

→ →


