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Goal: understand the relationship of the geometrical optics and physical optics

B.1  The Domain of Geometrical Optics
Goal: understand the relationship of the geometrical optics and physical optics

Subject of interest is the physical optics formulation of the imaging  and spatial 

filtering and the related concepts in geometrical optics.

Wavelength of the light is always the same but

if the variations or changes of the amplitude and phase of a wavefield take 

place on spatial scales that are much larger than the wavelengthplace on spatial scales that are much larger than the wavelength, 
then predictions of the geometrical optics become accurate.
Things that take us out of the relm of the geometrical optics:

A h d        A sharp edge 
        A sharply defined aperture
        A sharp change of the phase by a significant fraction of 2  over a spatial π

~

scales comparable to 
1Example: a grating with  has to be treted by physical optics 
N

λ

λ

2

1                 a grating   can be treate
N

λ>> d by geometrical optics 



The Concept of a Ray
A ray traces the path of power flow in an isotropic mediumA ray traces the path of power flow in an isotropic medium.

What does this mean?
A monochromatic disturbance traveling in a medium with an index g
of refraction that varies slowly compared to the wavelength of the 
disturbance is expressd by:
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( )  or the   contains the effect of the refractive index.S r Eikonal Function

Wavefro

G

( ) are surfaces defined by constantnts S r =
G

In an isotropic medium: direction of the power flow and 

direction of the wavevector are both normal to thek wavefronts
G
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The geometrical optics limit & Eikonal Equation
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  perhaps is the most important equation on the behavior of light 
under

Eikonal equation S r n

Eikonal equation

λ → ∇ =
G

. the geometrical optics approximation
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The   defines the  and therfore the trajectory of the .
 means image in Greek.

Eikonal equation wavefront rays
Eikon



B.2  Refraction, Snell’s Law, and the 
Paraxial ApproximationParaxial Approximation

( ) ( )2 2

)

It can be derived from the Eikonal equation  that rays in a 

a) homogeneous medium (constant always travel in straight lines

S r n r

n

∇ =
G G

)
)

a) homogeneous medium (constant  always travel in straight lines.
b) inhomogeneous medium (varying  have curved trajectories th

n
n at depend

on the changes of index of refraction. 

1 1 2 2

'
sin sin

Waves encountering abrupt changes of  experience abrupt changes in 
direction of propagation. This is formulated in  :

n
Snell s law

n nθ θ=1 1 2 2sin sin
Applying 
n nθ θ

1 1 2 2

sin cos 1
'

the   where  and  the 
  becomes  

paraxial approximation
Snell s law n n

θ θ θ
θ θ

≈ ≈
=
�

1 2

'Defining the    we have a simple form for  reduced angle n Snell s lawθ θ

θ θ

=

=

�
� �
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B.3  The Ray Transfer Matrix
An equivalent formalism to the operator methods of the physical optics in geometrical

optics is the matrix formalism which is valid under paraxial approximation.
To apply the matrix formalism we need to limit ourselves to  rays.meridonal
Meridonal rays are the rays that are traveling in a single plane containing the axis.
The transevers axis in the plane is caled  axis by tradition.
In figu

z
meridonal y

re a typical ray propagation problem is demonstrated.

2 2

1 1

Goal: to determine the position  and angle  of the output in terms
of the position  and angle  of the input.
Fact: under the paraxial approxi

y
y

θ
θ

mation the
A t i l ti bl

( ) ( )2 2 1 1

2 1

, ,relationship between  and 
are linear and written as:

y y

y yy Ay B A B

θ θ

θ⎧ ⎛ ⎞ ⎛ ⎞= + ⎛ ⎞⎪
�

θ
θ2

y1 y

A typical ray propagation problem

Input

Output 
ray

2 12 1 1

2 12 1 1  

the matrix  is called

y yy Ay B A B
C DCy D

A B
C D

θ
θ θθ θ

⎧ ⎛ ⎞ ⎛ ⎞= + ⎛ ⎞⎪ → =⎜ ⎟ ⎜ ⎟⎨ ⎜ ⎟
= + ⎝ ⎠⎪ ⎝ ⎠ ⎝ ⎠⎩

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

M

� �� �
Optical 
system z

z1
I t

z2
Output

θ1
y1 y2

Input 
ray
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2.2 Spatial frequency and space-frequency 
localization I
Each Fourier component of a function is a complex exponential function 
of a unique spatial frequency. Therefore every frequency component 

( , )

q p q y y q y p

extends over the entire  domain. 

So we can't associate a 

x y

spatial location for a particular spatial frequency. 

( )

( )

2 ( )

2 ( )

( , ) ,
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j f x f y
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g x y G f f e df df

G f f g x y e dxdy

π

π

∞ +

−∞

∞ − +

=

=

∫ ∫
∫ ∫ ( )( , ) ,

In practice certain portions of an image could contain parallel grid lines
X Yf f g y y

−∞∫ ∫
at 

a certain fixed spaing. We tend to say these frequencies are localized to 
the certain spatial regions of the image. 

What is the relationship of the local spatial frequencies or (  and ) with lX lYf f
the spatial frequencies of the Fourier components?

7

the spatial frequencies of the Fourier components?



Spatial frequency and space-frequency localization II

( , )( , ) ( , ) ( , )
( , )

Consider a complex valued function:    where  
is a positive slowly varying amplitude function and  is a real phase distribution. 

j x yg x y a x y e a x y
x y

φ

φ
=

We define the local spatial frequency ( , )( , ) ( , ) :
1 1( , ) ( , ) 0 0 ( , ) 0

2 2

of the function 

   and   also  &  if  

j x y

lX lY lX lY

g x y a x y e

f x y f x y f f g x y
x y

φ

φ φ
π π

=
∂ ∂

= = = = =
∂ ∂

When the rate of phase change is constant we have a fixed  as rate chages then 

we move t
lf

2 ( )( , ) ( , ) 1
1 1( ) ( )

o a different . Now for  with  we obtain 

d

X Yj f x f y
lf g x y e a x y

f f f f f f f f

π += =

∂ ∂1 12 ( ) 2 ( )
2 2

and 

So for the case of a single Fourier component the local spatial frequencies 

lX X Y X lY X Y Yf f x f y f f f x f y f
x y

π π
π π

∂ ∂
= + = = + =

∂ ∂

( )and are the same and span over the entire plane (no localization)f f x y( ), and  are the same and span over the entire  plane (no localization).lf f x y
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Spatial frequency and space-frequency localization III
Now we consider a space limited version of the quadratic phase 

2 2( ) ) :

exponent or a finite chirp function (chirp function is another name for 

the infinite-length quadratic phase exponent j x ye πβ +

⎛ ⎞ ⎛ ⎞
( , )g x y =
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Y Y
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f y y
L y L

x yf x rect f y rect
L
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( )
1

,
2 2 .
depend on location on the  plane within the rectangle of dimensions 

,   varies linearly with  and  varies linearly with 

Y

X Y lX Y

x y
L L f x f y

⎝ ⎠

×
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So for this function and many other functions t

( ),

here is a dependence of  

local spatial frequenciy on the position in the  plane.x y



Local Spatial Frequencies and the 
Ray-Transfer MatrixRay Transfer Matrix

-Relationship of the local spatial frequencies  and the  matrix:

Under the paraxial approximation the reduced ray angle  is related to 
lf ray transfer

θ
�

p pp y g
 the local spatial frequencies throughl

l

f

f θ θ
λ λ

= =
�

0

W

lf λ λ
e see that local spatial frequencies of a coherent optical wavefront 

correspond to the ray directions of the geometrical optics description 

2 1 2

of that wavefront.
y y yA B⎛ ⎞ ⎛ ⎞ ⎛⎛ ⎞

= →⎜ ⎟ ⎜ ⎟⎜ ⎟� � 1yA B⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

2 02 1 lfC D λθ θ
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ 1 0

,So  the ray-transfer matrix relates the spatial distribution of the 
local spatial frequencies  (or ray directions) at the output to the spatial 

l

l

fC D

f

λ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

M
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oca spat a eque c es (o ay d ect o s) at t e output to t e spat a
distribution of the  

l

l

f
f (or ray direction) at the input.



Elementary Ray-Transfer Matrices I
R f i f i

.
Ray-transfer matix of some important structures
1. Propagation through free space of index  

The angle of propagation stays unchnged

n

θ θ θ2 1

2 1
2 tan

The angle of propagation stays unchnged 

while  changes  y yy
d

θ θ θ

θ θ

= =
−

≈ =

2 1

2 1

y yA B
C Dθ θ

⎛ ⎞ ⎛⎛ ⎞
=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

� � 1 1d y yA B
C D

θ

θ θ

+⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
→ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
� �

A t i l ti bl
1 1

1

d y Ay B

Cy D

θ θ

θ θ

⎧ + = +⎪→ ⎨
+ =⎪⎩

�

� �

θ

θ2

y1 y

A typical ray propagation problem

Input d

1 /

Therefore a matrix that satisfies 
the above equation has the form:

d⎛ ⎞

Optical 
system z

z1
I t

z2
Output

θ1
y1 y2

Input 
ray

d
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d n⎛ ⎞
= ⎜ ⎟
⎝ ⎠

M
Input 
plane

Output
plane

n n n



Elementary Ray-Transfer Matrices II

2 1 2 1 1

.2. Refrction at a planar interface  

y y y Ay BA B θ⎧⎛ ⎞ ⎛ ⎞ = +⎛ ⎞ ⎪= →⎜ ⎟ ⎜ ⎟ ⎨⎜ ⎟

�
� � � �
2 1 2 1 1

2 1

2 2 1 1

At a planar interfac the angle of propagation change  but 
according to the Snell's law

C D Cy D

n n

θ θ θ θ
θ θ

θ θ

⎜ ⎟ ⎜ ⎟ ⎨⎜ ⎟
= +⎝ ⎠ ⎪⎝ ⎠ ⎝ ⎠ ⎩

≠
=

� �

2 2 1 1according to the Snell s law  n nθ θ

2 1

2 1

Therefore the reduced angle remains unchanged 
while position of the ray is unchanged  y y

θ θ=
=

� �

Therefore a matrix that satisfies 
the above equation has the form: θ θInput

1 0
0 1

the above equation has the form:
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

M zz2
Output

θ1 θ2
y1

y2

Input 
ray

12

Output
plane

n1
n2

Optical system



Elementary Ray-Transfer Matrices III
3 R f ti t h i l i t f

1 2

2

.3. Refrction at a spherical interface  
At a spherical interfac the position of ray is not changed 
while the angle of propagation with respect the the normal to the 
surface, change according

y y y

φ

= =

2 2 1 1to the Snell's law n nφ φ=

θ1
θ2

y1
y2

Input 
ray

2surface,  change  accordingφ 2 2 1 1

1 1 1 1 2 2arcsin

to the Snell s law   
The relationship of the  to the angle with the optical axis  is 

 where  so  and 

n n

y y y y
R R R R

φ φ
φ θ

φ θ ψ ψ φ θ φ θ= + = ≈ = + = +

z

2 2 1 1 1 1 1 2 2 2 1 1 2With     y y yn n n n n n n
R R R

φ φ θ θ θ θ= → + = + → + =
� �

( )
2

1 2
2 1  

yn
R

n n
y

R
θ θ

+

−
= +

� �
n1 n2

θ

( ) ( )
1

1 2 1 2
11 1 1

Therefore a matrix that satisfies

y y Ay ByA B
n n n nC Dy y Cy D

R R

θ

θθ θ θ

⎧ = +⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎪⎜ ⎟ = →⎜ ⎟− ⎨⎜ ⎟ −⎜ ⎟+ + = +⎝ ⎠⎜ ⎟ ⎝ ⎠ ⎪⎝ ⎠ ⎩

�

�� � �
R

φ1 φ2θ1

θ2
y1

( )1 2

1 0

1

Therefore a matrix that satisfies 
the above equation has the form:

n n
⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟

M
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( )
1

A positive valu
R

⎜ ⎟⎜ ⎟
⎝ ⎠

e for R satisfies the convex surface encountered from left to right.
A negative value for R satisfies the concave surface encountered from left to right.



Elementary Ray-Transfer Matrices IV
4 P th h thi l

2 1

1 2

.4. Passage through a thin lens  

A thin lens with index  embedded in a medium of  can be treated 
by cascading two spherical interfaces. for the second surface roles of 

and are switched. Ray-t

n n

n n ransfer matix of the1 2 and  are switched. Ray tn n

( ) ( )1 21 2 2 1

1 2

1 0 1 0

1 1

ransfer matix of the 

surface 1:  and surface 2: n n n n
R R

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

M M

( )2 1
2 1

1 2

1 0

1 1 1
The total effect of both syrfaces: 

n n
R R

⎛ ⎞
⎜ ⎟

= = ⎛ ⎞⎜ ⎟− − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

M M M

⎛ ⎞

s1 s2 sn

Defining the focal length of the 2 1

1 1 2

1 1 1

1 0

 lens: n n
f n R R

n

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟= ⎜ ⎟M

R1R2

z
1 1

To use the Ray-transfer matrix for many instruments and surfaces, the 
matrices should appear in the order which the ray has emcountered them.

n
f

= ⎜ ⎟−⎜ ⎟
⎝ ⎠

M

n2n1 n1

….

nn

14

2...n=M M M M1

Since we have used the reduced angles insted of real angles, determinant
of all the transfer matrices have become unity.



Cardinal points and planes in Gaussian 
opticsoptics
• The cardinal points and the associated cardinal 

planes are a set of special points and planes in an 
optical system, which help in the analysis of its paraxial 
properties. The analysis of an optical system using 
cardinal points is known as Gaussian optics, namedcardinal points is known as Gaussian optics, named 
after Carl Friedrich Gauss.
– The cardinal points and planes of an optical system 

i l dinclude:
– The focal points and focal planes

The principal planes and principal points– The principal planes and principal points
– The surface vertices (or vertexes). 
– The nodal points

15
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B.4  Conjugate Planes
Conjugate planes: Two planes or points within an optical system are said to be conjugate j g p p p p y j g

planes if intensity distribution across one plane is an image of the intensity distribution

across the other pla

2 1 1

ne. 

U i h f th j t i t th i t d t t l
y Ay Bθ⎧ = +⎪

⎨

�
2 1 1

2 1 1

2 1

Using  we can show for the conjugate points on the input and output plane 

1) the position of the point  should be independent of the reduced angle  of a ray 
throug

y y

Cy D

y

θ θ

θ

⎪
⎨

= +⎪⎩
� �

�

1 0.  therefore y B =

2 1

2

2) .

3)

   where  is the transverse magnification. Therefore  

 the angles of the rays passing through  will be maginfied or demagnified with 
respect to the angles of the 

t t ty m y m A m

y

= =

1.rays arriving from  If   y m reduced angular magnificationα =
� �

( )

2 1

1

.
0

0

( / )

 then  Therefore 

And 

Angle and position are conjugate Fourier variables

t

m D m
m

m

k k

α α

α

θ θ

−

= =

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

M

( )1cos ( / )Angle  and position  are conjugate Fourier variables. 

The similarity (scaling) th
yk k y

-1
1 1 2 2 1 2 2 1 1

0
1 / / 1

0

eorem implies that

      t
t t

m
y y y y m m m m

mα αθ θ θ θ −

⎛ ⎞
= = → = → = → = → = ⎜ ⎟

⎝ ⎠
M

� � � �
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0

1

Note  and  can be both positive and negative but they have to be of the same sign.

Nonparaxial form of the  

t

t

t

m
m m

m m
α

α

⎝ ⎠

= 1 1 1 2 2 2sin sinis caled sine condition:    n y n yθ θ=



B.4  Focal Planes
For a parallel bundle of rays traveling parallel to the optical axis and entering a lens, there always o a pa a e bu d e o ays a e g pa a e o e op ca a s a d e e g a e s, e e a ays
will exist a point on the optical axis toward which the ray bundle converge (positive lanse) or f

0

rom 
which it will appear to diverge (negative lens). If  is the focal length of the lens, then the ray-transfer f

f⎛ ⎞
⎜ ⎟

1

1

0

0
matrix between the focal planes takes the forrm      Exercise: p

n
n
f

⎜ ⎟
⎜ ⎟=
⎜ ⎟
−⎜ ⎟
⎝ ⎠

M rove this 

Rear 
focal 
point

f

Front 
focal 
point

ff2
Rear 
focal 
plane

f1
Front 
focal 
plane

Front 
focal 
point

Rear 
focal 
point

f
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f1
Front 
focal 
plane

f2
Rear 
focal 
plane



B.4 Principal Planes
For thin lens For thick lensy y y y≠

Rear 
focal 
point

2 1 2 1.For thin lens   For thick lens .
We can assume that focusing power of a thick lens is concentrated on 
a set of planes. We call such planes principal planes (see the figures). 
Principal plane

y y y y= ≠

s are introduced to make the thick lens analysis simple.
In general principal points do not make a flat surface but for small

f2
Rear 
focal 
planeIn general principal points do not make a flat surface but for small 

aperture lenses that we are interested in, they can be considered flat.
The 

1 2 21

principal planes are conjugate of each other with "unit" 
magnification i.e.  but 
For thin lenses and coincide and become one plane

y y
P P

θ θ= ≠
Front 

planep2

1 2For thin lenses  and  coincide and become one plane 

but in general they are two separate planes.

Ray-trans

P P

11)

0 (

fer matrix for propagation of light between two principal planes: 
 If parallel rays arrive at , then system yeilds rays that are converging from 

the towards then & &

P

P f Cθ θ
� �

) / /f C f→

focal 
point

f1
2 2 1 2 1 2 10 (the  towards  then  &  & P f y y Cy n yθ θ= = = = − 2 2 2

1 1 1

2 1 1
2

) / /
1

1
 

2) If a point source is located on the then it yields collimated beam

f C n f
B

y Ay B
n

Cy D f
f

θ

θ θ

→ = −

⎛ ⎞⎧ = +⎪ ⎜ ⎟→⎨ ⎜ ⎟−= +⎪ ⎜ ⎟⎩ ⎝ ⎠

�

� � p1

Front 
focal 
plane

1

2 1 2 2 1 1 1 1 1

,

. 0 0 / / / /

2) If a point source is located on the  then it yields collimated beam 

leaving  Then  &  &  so 

f

P y y B C D y n y n fθ θ θ= = = = − = − = −
� �

1 1 1
1

2 1 1

1
1 /

1

 

since  then  therefore  
B

y Ay B
D C n f n

Cy D f

θ

θ θ

⎛ ⎞⎧ = +⎪ ⎜ ⎟= = − →⎨ ⎜ ⎟−= +⎪ ⎜ ⎟⎩ ⎝ ⎠

�

� � y1
θ1 θ2y2
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1

1 2
1 2

1
,

1
 and 

f

B
n nC f f f n
f f

f

⎩ ⎝ ⎠
⎛ ⎞
⎜ ⎟= − = − → = = = ⎜ ⎟−⎜ ⎟
⎝ ⎠

M

p2p1



B.5 Exit and entrance pupils
Effects of pupils or finite apertures on the ray-transfer.

Entrance and exit 
pupil both 
coincide with the 
physical aperture

Apertures are sources of diffraction so they have influence on 
the image. An optical system may have many limiting apetures. 
1) enterance pupil of the optical system is the image of the most 

severely limiting aperture when viewed from the object space lookingseverely limiting aperture, when viewed from the object space, looking 
through any optical elements that may proceed the optical system.
2) exit pupil of the optical system is the image of the most severely 

limiting physical aperture, looking from the image space through Entrance 
il

This ray will be 
blocked either

any optical elements that may lie between the aperture and the 
image plane.     
For more complicated optical systems with many lenses and 
apertures using ray tracing we find the most severely affecting

pupil
Image

blocked either 
by the entrance 
or exit pupil

apertures using ray tracing we find the most severely affecting 

aperture and then finding its image viewd from the object space 
and image space we determine the enterance and exit pupils of 
the system.

Exit pupil
Physical

y
For an abberation-free system image of a point-source is a perfect 

point. Introducing the exit pupil, diffraction effects are observed on 
the image. We can use the diffraction formula to calculate the spatial 
di t ib ti f th i f i t

This ray will be 
blocked either 
by the entrance 
or exit pupil

19

distribution of the image of a point source. 
The distance from the exit pupil to the image plane is 
the distance  appearing in the z diffraction formula. Entrance pupil

physical

Exit pupil
Image



The Surface Vertices and Nodal points
• The surface vertices are the points where each 

surface crosses the optical axis. They are 
important primarily because they are the 
physically measurable parameters for thephysically measurable parameters for the 
position of the optical elements, and so the 
positions of the other cardinal points must be 
known with respect to the vertices to describe 
the physical system.

Front 
surface 
vortex

θ
p y y

• The front and rear nodal points have the 
property that a ray that passes through one of 
them will also pass through the other, and with 

Optical 
axis

R

v1

v2N1

N2

θ2

θp g
the same angle with respect to the optical axis. 
The nodal points therefore do for angles what 
the principal planes do for transverse distance. 
If the medium on both sides of the optical 
system is the same (e g air) then the front and

Rear 
surface 
vertex

θ1

system is the same (e.g. air), then the front and 
rear nodal points coincide with the front and 
rear principal planes, respectively.

• Exercise: Find the transfer matrix for the 
nodal points

20

nodal points



5.1  A thin lens as a Phase Transformation
1lens: an optically dense material with > Different phase 

( )

1

,

lens: an optically dense material with 
Speed of light is less than  in a lens.
Thin lens: a ray arriving at coordinates  on one face, exits at 
approximately the same coordinates on the opposite 

n
c

x y

>

2 1.face or y y=

p
delays causing 
different k vectors

pp y pp 2 1

A thin lens simply delays an incident wavefront by an amount 

proportional to the thickness of the lens at each point. 
Phase delay means change in the wavefront shape, therefore 

y y

n

change in

0

( , ) ,
( )

 direction of parpagation vector. We define:

Maximum thickness 
Thickness at coordinates 

Total phase delay suffered by the wave at passing through
x y x y

x y

Δ =

Δ = Δ(x,y)

x or ySide 
view

0

( , )

( , ) ( , ) ( ,

Total phase delay suffered by the wave at  passing through 

the lens: 

x y

x y k k x y kn x yφ = Δ − Δ + Δ )
The lens may be represented by a multiplicative 

n
z

Δ0

[ ]

( ) ( )

0 ( 1) ( , )

' , ,

phase transformation of the form:
jk n x yjk

l

l l

t e e

U x y t x y

− ΔΔ=

=��	�
 ( , )lU x y��	�
�	


yFront 
view

21

Complex field across Phase delay 
a plane imediately caused by 
behind the lens the

	

( )'

( , )
,

Complex field incident
on a plane imediately
in front of the lens lens

If we know the mathematical form of the thickness function  
then we can calculate  and unederstand the efl

x y
U x y

Δ

		

fects of the lens.

x



5.1.1  The thickness function
Δ02

( , )Goal: define the thickness function  for a lens. 
Sign convention:
Rays travel from left to right.
1) Radius of convex surfaces encountered

x yΔ y

r1) Radius of convex surfaces encountered
by the lens are positive. 
2) Radius of concave surfaces encountered 
by the lens are negative

R1

(x,y)
x

( )

( ) ( ) ( ) ( ) 2 2 2

,

by the lens are negative. 

To find  we split the lens to three parts 
and write the total thicknes function as:

with

x y

x y x y x y x y r x y

Δ

Δ = Δ + Δ + Δ = +

2 2 2
1 1R R x y− − −

( ) ( ) ( ) ( )

( ) ( )
1 2 3

2 2
2 2

1 01 1 1 01 1 2
1

, , , ,

, 1 1

with x y x y x y x y r x y

x yx y R R r R
R

Δ = Δ + Δ + Δ = +

⎛ +
Δ = Δ − − − = Δ − − −

⎝
( )

⎞
⎜ ⎟⎜ ⎟

⎠
Δ Δ

Δ01

(x,y)
R( )

( ) ( )
2 02

2 2
2 2

3 03 2 2 03 2 2
2

,

, 1 1

x y

x yx y R R r R
R

Δ = Δ

⎛ ⎞+
Δ = Δ − − − − = Δ + − −⎜ ⎟⎜ ⎟

⎝ ⎠ 2 2 2
2 2R R x y− − − −

R2

22

( )
2 2 2 2

0 1 22 2
1 2

0 01 02 03

, 1 1 1 1

Where 

x y x yx y R R
R R

⎛ ⎞ ⎛ ⎞+ +
Δ = Δ − − − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
Δ = Δ + Δ + Δ

2 2R R x y

Δ03



5.1.2  The paraxial approximation
Goal: to simplify the thickness function for the cases that 
are restricted to portions of wave near the lens axis. 
That means al es of and are s fficientl small to rite

2 2 2 2

2 21 1
2

That means values of  and  are sufficiently small to write:

 a

x y

x y x y
R R
+ +

− ≈ −
2 2 2 2

2 21 1
2

nd  x y x y
R R
+ +

− ≈ −
1 12R R 2 2

2 2 2 2

2
Then we have:

R R

⎛ ⎞ ⎛ ⎞
( )

2 2 2 2

0 1 22 2
1 2

2 2 2 2

, 1 1 1 1x y x yx y R R
R R

⎛ ⎞ ⎛ ⎞+ −
Δ = Δ − − − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞( )

2 2 2 2

0 1 22 2
1 2

2 2

, 1 1 1 1
2 2

1 1

x y x yx y R R
R R

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ +
Δ ≈ Δ − − − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞
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( )
2 2

0
1 2

1 1,
2

x yx y
R R

⎛ ⎞+
Δ ≈ Δ − −⎜ ⎟

⎝ ⎠



5.1.3  The Phase Transformation and its 
physical meaningphysical meaning

( ) [ ]

( ) ( )

0 ( 1) ( , )

'

,

( )

The lens representation as a multiplicative phase transformation:
jk n x yjk

lt x y e e

U U

− ΔΔ=

( ) ( )

( ) ( )
2 2

0
1 2

, , ( , )

1 1, ,
2

Substituting  in  we get: 

l l l

l

U x y t x y U x y

x yx y t x y
R R

=

⎛ ⎞+
Δ ≈ Δ − −⎜ ⎟

⎝ ⎠

( )
2 2

0
10

1 1( 1)
2,

x yjk n
Rjk

lt x y e e
+

− Δ − −
Δ=

2 2

2 1 20

1 1( 1)
2

We combine physical properties of the lens in a single parameter 

x yjk n
R R Rjkne e

f

⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟ − − −⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ Δ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦=

( )
( )2 2

0 2

1 2

1 1 1( 1) , .

p y p p g p

 then  

f

kj x y
fjkn

l

f

n t x y e e
f R R

⎡ ⎤
− +⎢ ⎥Δ ⎣ ⎦⎛ ⎞

= − − =⎜ ⎟
⎝ ⎠

f fIf we neglect the constant phase factor, the basic representation of 
the effects of a thin lens on the incident distribution as a pahse 
transformation factor can be written as:

24

( )
( )2 2

2,
We have no

kj x y
f

lt x y e
⎡ ⎤
− +⎢ ⎥
⎣ ⎦=

t acounted for the finite extent of the lens here.



Lens varieties
1If we follow the above sign covention, the equation for  represents all 

six kinds of lens shown in Fig.
Exercise:

t

Exercise: 
a) show that focal length of a double-convex, plano-convex, and 
positive meniscus lens is positive. 
b) show that focal length of a double-concave, plano-concave and
negative meniscus lens is negative.

Double- plano- Positive 
i

Double- plano- Positive 

25

convex convex menisc
us

concave concave meniscus



Physical meaning of lens transformation

( , ) 1

Goal: understand physical meaning of the lens transformation
Illumination: normally incident, unit-amplitude plane wave
The field distribution in front of the lens  then lU x y =

( ) ( )' , , ( , )
(

l

l l l

l

U x y t x y U x y
U x

=

( )
( )2 2

2', ) 1 ,
kj x y
f

ly U x y e
⎡ ⎤
− +⎢ ⎥
⎣ ⎦

⎧
⎪
⎪

= ⇒ =⎨
f

(l

( )
( )

( )
2 2

2

, ) ,

,

0

A quadratic approximation 
to a spherical wave

For  the spherical wave is converging towards 

l

kj x y
f

l

y y

t x y e

f

⎡ ⎤
− +⎢ ⎥
⎣ ⎦

⎨
⎪
⎪ =⎩

>

�����	����


p g g

a point on the axis of lens at a di

f

0
stance  behind the lens.

For  the spherical wave is diverging from a point on the 

i f l t di t i f t f th l

f
f

f

< f
axis of lens at a distance  in front of the lens. 
Effect of a lens composed of spherical surfaces under the paraxi

f
:al approximation

plane wavefront spherical wavefront.→

26

Aberrations show on departures from the paraxial regime.



5.2  Fourier Transforming Properties of 
LensesLenses
A converging lens performs two-dimensional Fourier transformation which 
is a very complicated analog operation.
Coherent optical systems: systems with monochromatic illumination that are p y y

linear in complex amplitude and the distribution of light amplitude across a 
particular plane behind the lens is of interest (for example back focal plane).
Input transparencies: a device with amplitude transmittance proportional toInput transparencies: a device with amplitude transmittance proportional to 
the input function that represents the information to be Fourier-transformed. 
Input transparencies may also be refered to as object and may be produced

b fl tiby reflection.
Here are several geometries for performing Fourier transform operation with 
positive lense: 
  Input Input Input

d

27
f(a) f(b)d f(c)



5.2.1  Input placed against the Lens I
( )( ),Input: a planar transparency with  located imediately in front of the lens

Fourier transformer: a converging lens with focal length 
Illumination: a uniform (across the transparency , ) normally 

At x y

f
ξ η incident 

( ),

1

monochromatic plane wave of amplitude .
Disturbance incident on the lens: 

inside the lens aperture
l A

A
U At x y=

⎧( ) 1
,

0
 inside the lens aperture

Pupil fuunction (for finite extent of the lens): 
  otherwise

Note: here s

P x y
⎧

= ⎨
⎩

( ) ( ),ince lens is very close to aperture , x yξ η →

( ) ( ) ( )
( )2 2-

' 2, , ,
Effect of the lens on the phase

The amplitude distribution behind the lens: 
kj x y
f

l lU x y U x y P x y e
+

= ��	 
��	�
 ��	�
 �
InputEffect of the lens on the phase Disturbance at the lens   Lens aperture

	 	

( , )Disturbance on the back focal plane of the lens:  
Using the Fresnel diffraction formula from chapter 4:

fU u V

28
f(a)

( ) ( ) ( )2 2 2 2 2( )
2 2, ( , )
k kjkz j x yj x y j

zz zeU x y e U e e d d
j z

π ξ ηξ η
λξ η ξ η

λ

∞
− ++ +

−∞

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∫ ∫



5.2.1  Input placed against the Lens II

( )
( ) ( )

2 2
2 2

( ) 22
' 2, ( , )with    

kj u V kjkf f j x y j xu yV
f f

f l
e ez f U u V U x y e e dxdy

j f

π
λ

λ

+
∞ + − +

−∞

= → = ∫ ∫

( ) ( ) ( ) ( )
( )2 2

2' , , , ,

dropping the constant pahse factor  and substituting  

 we get:

jkf

kj x y
f

l l l l

e

U x y U x y t x y U x y e
⎡ ⎤
− +⎢ ⎥
⎣ ⎦= =

( )
2 2( )

2

,

kj u V
f

f
eU u V

+

= ( ) ( )
( ) ( ) ( )2 2 2 2 2-

2 2

1

, ,
k kj x y j x y j xu yV
f f f

lU x y P x y e e e dxdy
j f

π
λ

λ

∞ + + − +

−∞
∫ ∫ ����	���


( ) ( ) ( )
( )

2 2( ) 22

, , ,

kj u V
f j xu yV

f
f l

eU u V U x y P x y e dxdy
j f

π
λ

λ

+
∞ − +

−∞

= ∫ ∫
Input

( ),
If the physical extent of the input is smaller than the lens 
the factor  may be dP x y

2 2( ) 22

ropped. 
kj u V
f π+

29f(a)

( ) ( )
( )

( ) 22

, ,   

 

j
f j xu yV

f
f l

eU u V U x y e dxdy
j f

π
λ

λ

∞ − +

−∞

= ∫ ∫



5.2.1  Input placed against the Lens III
some phase factors  Fourier transform of the input amplitude transmittance 

at frequenciesFocal plane amplitude distribution ���� / /andf u f f v fλ λ= =

( )
( )

( )
( )

2 2, ( ) 22

, ,

at frequencies Focal-plane amplitude distribution
at coordinates i ku V j u V

f j xu yV
f

f l
eU u V U x y e dxdy

j f

π
λ

λ

+
∞ − +

−∞

= ∫ ∫

����
����

/ / and X Yf u f f v fλ λ= =������������

Conclusion: the complex amplitude of the field in the focal plane of the 
lens is the Fraunhofer diffraction pattern of the field incident on the lens.
Note: here the distance from lens to the observation plane is only fNote: here the distance from lens to the observation plane is only  
rather than a distance that satisfies the Fraunhofer diffraction criteria.
For the cases that only intensity matters (e.g. photography) these two are 

f

the same but when we need to pass the focal-plane amplitude distribution 
from one lens to another optical system (maybe another lens) then we need 
the phase information as well so the complete  is rfU equired. 

Input
p p f

( ) ( )
( )

222

2 2, ,

q

 
j xu yV

f
f A

AI u V t x y e dxdy
f

π
λ

λ

∞ − +

−∞

= ∫ ∫

30
f(a)

( ),Measuring , the intensity distribution on the focal 
plane yields power spectrum or energy spectrum of the input.

fI u V



5.2.2  Input Placed in Front of the Lens I
( ), .Input: a planar transparency with  located in front of the lens at a distance At dξ η

Input

( ),p p p y
Fourier transformer: a converging lens with focal length 
Illumination: a uniform (across the transparency) normall

A

f

ξ η

y incident 
monochromatic plane wave of amplitude .A

( ) ( ){ }

( )

0 , ,

monochromatic plane wave of amplitude .
 Fourier spectrum of the light transmitted 

by the input transparency
Fourier spectrum of the light incident on the lens

X Y A

A

F f f At

F f f

ξ η= F

f(b)d

( )

( )

,

,

 Fourier spectrum of the light incident on the lens. l X Y

X Y

F f f

H f f ( ) ( )
2 2

2 2
2 1 2 2 1

,     
X Y

X Y

zj f f
j z f fjkzX Y

X Y
e f f H f f e e

π
λ πλ

λ
− − +

− +
⎧

+ <⎪= → =⎨
⎪��	�
 ������	�����

0Transfer Function Fresnel approximation for the 

of the propagation transfer function of the propagation
                     otherwise⎪⎩

	

( ) { } ( ) ( ) ( ) ( )2 2

0, , , , X Yj d f fjkz
l X Y l A X Y X YF f f U At H f f F f f e e πλξ η − +

⎧ ⎫⎪ ⎪= = =⎨ ⎬
⎪ ⎪

	

� 
 � 
F F

( ) ( ) ( )

( )

2 2

2 2 2 2

0

( )

, ,

Input propagation

  dropped the constant phaseX Yj d f f
l X Y X Y

k kjkz j x y j

F f f F f f e

e

πλ

ξ η

− +

+ +

⎪ ⎪⎩ ⎭

=

⎧ ⎫

��	�
 ��	�


( )2j x yπ ξ η
∞

− +

∫ ∫
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( ) ( )( )
2 2, ( , )

j x y j
z zeU x y e U e

j z
ξ η

ξ η
λ

+ +⎧ ⎫
= ⎨ ⎬

⎩ ⎭

( )

Fresnel approximation

j x y
ze d d

ξ η
λ ξ η

+

−∞
∫ ∫

�������������	������������




( ) 1  inside the lens aperture
P il f ti (f fi it t t f th l ) P

⎧
⎨

5.2.2  Input Placed in Front of the Lens II
( ),

0
p

Pupil fuunction (for finite extent of the lens): 
  otherwise

For now we ignore finite extent of the lens. 
The field distribution at the focal plane with replacing va

P x y
⎧

= ⎨
⎩

riables x yξ η→ →The field distribution at the focal plane with replacing va

( ) ( ) ( )
( )

( )
2 2 2 2( ) ( )22 2

, ,
,

riables   
  in the Fresnel approximation:

k kj u V j u V
f fj xu yV

f

x y
x u y V

e eπ
λ

ξ η

+ +
∞ − +

→ →
→ →

∫ ∫( ) ( ) ( )
( )

( ) ( )

( )

, / / , 1

, , , ,

  with  and   

S b i

l X Y X Y

f
f l l X Y

F f f f u f f v f P x y

e eU u V U x y P x y e dxdy F f f
j f j f

λ

λ λ

λ λ−∞

= = =

= =∫ ∫
�������	������


( ) ( ) ( ) ( )
2 2

iX Yj d f fπλ− +Substitute lF f( ) ( ) ( ) ( )

( ) ( ) ( )
2 2

2 2

0

( )
2

0

, , , :

, ,

 into X Y

X Y

j d f f
X Y X Y f

kj u V
f

j d f f
f X Y

f F f f e U u V

eU u V F f f e
f

πλ

πλ

λ

+

+
− +

=

=

Input

( ) ( )

( )
2 2

0

/ /

1 ( )
2

, ,

 and X Y

f X Y

f u f f v f

k dj u V
f f

f f
j f

e

λ λ

λ
= =

⎛ ⎞
− +⎜ ⎟

⎝ ⎠

( )
( )2j u V

f
π ξ η

λ
∞ − +

∫ ∫
f(b)d
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( )

( ),

,
Amplitude and phase 

Quadratic phase factorof the light at 

f

u V

eU u V
j fλ

=
��	�
 ���	 


( )
( )

/ /

,

Amplitude and phase of the input spectrum 
at frequencies  and X Y

j
f

A

f u f f v f

t e d d
ξ η

λ

λ λ

ξ η ξ η
−∞

= =

∫ ∫
�� ������	�����


( )



For special case  d f=

5.2.2  Input Placed in Front of the Lens III

2 21 ( )
2

2

1

p

The quadratic phase factor 
k dj u V
f f

f

e
⎛ ⎞
− +⎜ ⎟

⎝ ⎠ =

( ) ( )
( )21, ,

Amplitude and 
phase of the light Amplitude and phase of the input spectrum

j u V
f

f AU u V t e d d
j f

π ξ η
λξ η ξ η

λ

∞ − +

−∞

= ∫ ∫��	�

������	�����


( ),
phase of the light Amplitude and phase of the input spectrum 
at at frequ V

( )

/ /uencies  and 

Conclusion: when the input is placed in front focal plane of the lens, 

the phase curvature dissapears and is exactly a

X Yf u f f v f

U u V

λ λ= =

( ),the phase curvature dissapears, and  is exactly a 

Fourier transformation of the inpu
fU u V

( ),t transparency At ξ η

Input

33f(b)d



5.2.2  Vignetting: limitation of the effective 
input by the finite lens aperture

Input plane Focal plane

Goal: including effect of the finite 
extent of the lens using geometrical 
optical approximation This is valid

η

ξ

y

x

V

u

Input plane Focal plane
[-(d/f)u1, -[d/f]V1]

Effective 
extent of 
the input

optical approximation. This is valid 
if  is small enough so that the 

input is located deep within the 
F l i ti d

d

i t

z (u1,V1)
θ

θ

Fresnel approximation d

1, 1 1 1( ) / , /

istance 
of the lens.
light amplitude at rays with direction cosines u V u f V fξ η= ≈ ≈∑

Lens
Object

d f

Not all of the rays coming from iput plane at these angles can pas through the lens. 
Only the ones within the g

( )

eomtrical shadow of the lens on the input plane meet the 
condition of apssing through the lens.

t b f d f th F i t f f th t ti f thU V( ), at  can be found from the Fourier transform of that portion of the 
input subtended by the projected

fU u V

( ) ( )/ , /

 pupil function at angle , centered at 

coordinates  d u f d V f

θ

ξ η⎡ ⎤= =⎣ ⎦
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( )
( )

( )
( )

2 21 22

, , ,

k dj u V
f f j u V

f
f A

Ae d dU u V t P u V e d d
j f f f

π ξ η
λξ η ξ η ξ η

λ

⎡ ⎤⎛ ⎞
− +⎢ ⎥⎜ ⎟ ∞⎝ ⎠⎣ ⎦ − +

−∞

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∫ ∫



5.2.2  Effect of Vignetting on practical design 
issuesissues
• Vignetting is the limitation for the input by the finite lens 

aperture. 
• For a simple Fourier transforming system, vignetting of 

the input space is minimized if 
Input is placed close to the lens– Input is placed close to the lens

– Lens aperture is much larger than the input 
transparencyp y

• If we are interested only in the Fourier transform of the 
input object, we should place it right against the lens to 

i i i th i ttiminimize the vignetting. 
• On the other hand if the input transparency is located at 

the front focal plane, then the transform relation is not 
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t e o t oca p a e, t e t e t a s o e at o s ot
altered by the quadratic phase factor and that may 
simplify the problem.  



5.2.3  Input Placed Behind the Lens I
( )Input: a planar transparency with located in front of the rare focal plane oft x y( ),

.

Input: a planar transparency with  located in front of the rare focal plane of 
the lens at a distance 
Fourier transformer: a converging lens with focal length 
Illumination: a uniform (across t

At x y

d
f

he transparency) normally incident monochromaticIllumination: a uniform (across t

( ),

he transparency) normally incident monochromatic 
plane wave of amplitude .
The incident wavefront on the input , is a spherical wave convergingA

A
t x y

towards the back focal plane of the lens.
An approxiamtion based on the following facts: 
1) Linear dimension of the cirular bundle at the lens is reduced by a factor 

Input

d

( )/ ,of  at the input 
2) Energy has been conserved
Amplitude of the spherical wave im

Ad f t x y

/pinging on the input: Af d
l

f(c)( )

/

( / ), /

Illuminated area on the input:   is the diameter of the lens
The limitted illumination of the input can be presented by 

a pupil function at the input plane

ld f l

P f d f dξ η⎡⎣ ⎤⎦

l

36

( )( / ), /a pupil function at the input plane P f d f dξ η⎡⎣
Effective aperture of the system: intersection of the input aperture 

with the projected pupil function of the lens on the input plane.

⎤⎦



5.2.3  Input Placed Behind the Lens II
Using the paraxial approximation for the amplitude of a transmitted wave by a

( ) ( )
( )2 2

' 2, ( , ) ,

Using the paraxial approximation for the amplitude of a transmitted wave by a 

spherical lens is:   
we write the amplitude transmitted at the input plane as:

kj x y
f

l lU x y U x y P x y e
− +

=

( )0 ,

we write the amplitude transmitted at the input plane as: 

Af fU P
d d

ξ η ξ ⎛=
( ) ( )

2 2

2, ,  

Assuming the Fresnel approx for the propagation from the input plane to the focal plane:

kj
d

A
f e t
d

ξ η
η ξ η

− +⎧ ⎫⎡ ⎤⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

( ) ( ) ( )2 2 2 2 2( )
2 2, ( , )

Assuming the Fresnel approx. for the propagation from the input plane to the focal plane:
k kjkz j x yj x y j

zz zeU x y e U e e d d
j z

π ξ ηξ η
λξ η ξ η

λ

∞
− ++ +

−∞

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∫ ∫   with  &  & 

Th lit d t th f l l b

x u y V z d→ → =

( )
( )

( ) ( ) ( ) ( )
2 2

2 2 2 2 22
2 2, , ( ),

The amplitude at the focal plane becomes:
kj u V k kd j j j u v

d d d
f A

e Af f fU u V t P e e e d d
j d d d d

πξ η ξ η ξ η
λξ η ξ η ξ η

λ

+ ∞
− + + − +

−∞

⎧ ⎫⎡ ⎤⎛ ⎞= ⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭
∫ ∫

Input

d( )
( )

( )
2 2

2
, , ( ),

kj u V
d

f A
Ae f f fU u V t P

j d d d d
ξ η ξ η

λ

∞

+

⎣ ⎦⎩ ⎭

⎛= ⎜
⎝

( )2j u v
de d d
π ξ η
λ ξ η

∞
− +

−∞

⎧ ⎫⎡ ⎤⎞
⎨ ⎬⎟⎢ ⎥⎠⎣ ⎦⎩ ⎭

∫ ∫
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f(c)

Again up to a phase factor, the focal-plane amplitude distribution 

of the input transparency is the Fourier transform of the 
portion of the input subtended by the projected lens aperture. 



5.2 Comparison of three cases
a) Input in front of the transformer pressed against it: 

Input

( ) ( ) ( )
( )

2 2( ) 22

, , ,

) p p g

 

kj u V
f j xu yV

f
f A

AeU u V t x y P x y e dxdy
j f

π
λ

λ

+
∞ − +

−∞

= ∫ ∫ f(a)

( ),

b) Input in front of the transformer at a distance from the lens:

fU u V ( ) ( )
( )

2 21 ( ) 22

, ,

k dj u V
f f j u V

f
A

Ae t P x y e d d
π ξ η

λξ η ξ η

⎛ ⎞
− +⎜ ⎟ ∞⎝ ⎠ − +

= ∫ ∫

( )
Input

I

( ),
Amplitude and 
phase 

f

( )

( ) ( )

, /

, ,

of the light Quadratic phase factor Amplitude and phase of the input spectrum 
Can be eleiminated by at at frequencies  aX

A

d fu V f u f

y
j f

λ

ξ η ξ η
λ −∞

= =

∫ ∫��	�
 ���	��

/nd 

c) Input in back of the transformer at a distance  from the back focal plane of 
Yf v f

d
λ=

�������	������

f(b)d

Input
d

( )
( )

( ) ( )
2 2

22
, , ( ),

the transformer:
kj u V
d j u v

d
f A

Ae f f fU u V t P e d d
j d d d d

π ξ η
λξ η ξ η ξ η

λ

+ ∞
− +⎧ ⎫⎡ ⎤⎛ ⎞= ⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

∫ ∫

f(c)

( ) ( ), , ( ),

Th

f Aj d d d d
ξ η ξ η ξ η

λ −∞

⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭
∫ ∫

( ) ( )
( )

e results of case a , (b) and c  are essentially the same except that 

in case c  scale of the Fourier transform is determined by the experimenter.
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( )
That is , the distance between input and back focal pland

,
e of the lens. 

For  both (a) and (c) cases give identical results.d f=



5.3  Image Formation: Monochromatic 
IlluminationIllumination
If an object in front of a lens illuminated properly, there will be a second plane 

across which the field distribution resembles the object.

:
The image may be 

actual rays intersect to form the imagreal
:

e  
seems like the rays coming from a virtual intensity distribution planevirtual :  seems like the rays coming from a virtual intensity distribution plane. 

We impose the following limitations on our analysis at this point: 

Lenses are positive, aberration-free, and thin th

virtual

1at form real images .z f>

Only monochromatic illumination (implies that the imaging system is linear in 

complex amplitutedes). 
More general case will be trated in chapter 6

Ul U’l UiU0

More general case will be trated in chapter 6.
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z1 z2object System



5.3.1 The impulse Response of a Positive Lens I
( )0 1,   complex field imediately behind the object (input transparency) at a distance U zξ η( )
( ) 2,   complex field at a distance  behind the lens

Goal: find the conditions under which the field distribution
iU u V z

0

  can reasonably 
be said to be an of the distribution

iU
image object U

( )

( ) ( ) ( )

0

0

.

, , ; , ,

be said to be an  of the  distribution 
Using the concept of linearity Chapter 2  we can express the  by:i

i

image object U
U

U u V h u V U d dξ η ξ η ξ η
∞

−∞
= ∫ ∫

( ), ; ,  is the   oh u V impulse responseξ η

( ) ( )0

( , )r the field amplitude producedt at  
by a unit amplitude point source applied at object coordinates. 

For an acceptable image must be as similar as possible to

u V

U u V U ξ η( ) ( )0, , .For an acceptable image  must be as similar as possible to 
Or the impulse response s

iU u V U ξ η

( ) ( ), ; , ,
hould resemble a Dirac Delta function:

is a complex constant
h u V K u M V M
K

ξ η δ ξ η≈ ± ± Ul(x,y) Ui(u,V)U0(ξ,η)
 is a complex constant.
 represents the system magnification

 signs accomodate image inversion

K
M

±

U’l(x,y)
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Image plane: a plane over which the approximati

( ) ( ), ; , ,

on is 

the closest or idealy .h u V K u M V Mξ η δ ξ η→ ± ±
z1 z2Object



5.3.1 The impulse Response of a Positive Lens II
( )T fi d i l l t th bj t b it lit d i th V ξ( )

( )

, ; ,

( , ) .0

To find impulse response:  we let the object be a unit amplitude point 

source located at ,  or U  The incident wave on the lens will be a 
jkr

h u V

e
r

ξ η

ξ η ξ η =
Ul(x,y) Ui(u,V)U0(ξ,η)

spherical wave diverging from the point ξ( )

1

, . 

Paraxial approximation to  at  is: 
jkre r z
r

η

=

U’l(x,y)

( )
( )2 2

1

2 2

( )
2

1

1,
kj x y
z

l

k

r

U x y e
j z

ξ η

λ

⎡ ⎤− + −⎢ ⎥⎣ ⎦

⎡ ⎤

≈
z1 z2

Object

( ) ( )
2 2

' 2, , ( , )The field distribution after the lens: 

Using Fresnel Diffraction equation to account 
l

kj x y
f

lU x y U x y P x y e
⎡ ⎤− +⎣ ⎦=

2

2 :for propagtion over a distance 
k

z
⎡ ⎤( )2 2

2
( )

2'

2

1( , ; , ) ( , )

Putting together all:

kj u x V y
z

lh u V U x y e dxdy
j z

ξ η
λ

⎡ ⎤− + −∞ ⎢ ⎥⎣ ⎦

−∞
= ∫ ∫
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( ) ( )2 22 22 2

1 2
( ) ( )

2 22
2

1 2

1( , ; , ) ( , )
k kkj x y j u x V yj x y
z zfh u V e P x y e e dxdy

z z

ξ η
ξ η

λ

⎡ ⎤ ⎡ ⎤⎡ ⎤− + − − + −− +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦=
∞

−∞∫ ∫



5.3.1 The impulse Response of a Positive Lens III
Integration is over and so we can pull out all of the terms independent ofx y x y

( ) ( )2 22 22 2

1 2
( ) ( )

2 22
2

1 2

,

1( , ; , ) ( , )

Integration is over  and  so we can pull out all of the terms independent of 
k kkj x y j u x V yj x y
z zf

x y x y

h u V e P x y e e dxdy
z z

ξ η
ξ η

λ

⎡ ⎤ ⎡ ⎤⎡ ⎤− + − − + −− +∞ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

−∞
= ∫ ∫

Neglecting a pure phase 
2 2 2 2

2 12 2
2

1( , ; , )

factor we get:
k kj u V j
z zh u V e e

ξ η
ξ η

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦
=

( )2 2

1 2 1 2 1 2

2
1 2

1 1 1
2

( , ; , )

( , )                   
k u Vj x y jk x y

z z f z z z z

h u V e e
z z

P x y e e dxdy
ξ η

ξ η
λ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − + − + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∞ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∞
× ∫ ∫

this result together with 

iU u

−∞∫ ∫

( ) ( ) ( )0, , ; , ,V h u V U d dξ η ξ η ξ η
∞

= ∫ ∫
Ul(x,y)

U’l(x,y)

Ui(u,V)U0(ξ,η)

( ) ( ) ( )
( ) ( )
( ) ( )

0

0

, , .

, ,

enable us to calculate  if we know 

But when we can say  is image of  
i

i

U u V U

U u V U

ξ η

ξ η

−∞∫ ∫
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is difficult unless we do further simplifications.
z1 z2

Object



5.3.2  Eliminating Quadratic Phase Factors: 
The Lens Law IThe Lens Law I

2 2 2 2

2 12 21( ; )

Let's look at the troublesome terms of the impulse response mainly quadratic factors:
k kj u V j
z zh u V e e

ξ η
ξ η

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦
2 1

2
1 2

( , ; , )

(

independent of the lens coordinates

                   

h u V e e
z z

P x

ξ η
λ

=

×

����	���


( )2 2

1 2 1 2 1 2

1 1 1
2, )
k u Vj x y jk x y

z z f z z z zy e e dxdy
ξ η⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ − + − + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∞ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∞∫ ∫ � 


1 2

1 1 1
2

Depends on the lens coordinates

Approximations that will elliminate these factors:

1)
kj x

z z f

−∞

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠

∫ ∫ ����	���


( )2 2

effect of this term will be broadening of the impulse response
y

⎡ ⎤
+⎢ ⎥

⎢ ⎥⎣ ⎦1 21) fe ⎝ ⎠

1
2

( , ; , ) ( , ).
 effect of this term will be broadening of the impulse response. 

Without that  will be a pure Fourier transformation of the  

So if we choose a distance that the term
kj

h u V P x y

e

ξ η

⎢ ⎥⎣ ⎦

( )2 2

1 2

1 1

( ; )vanishes then
x y

z z f h u V ξ η
⎡ ⎤⎛ ⎞

+ − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦So if we choose a distance that the term e

1 2

( , ; , )
1 1 1 0

1 1 1

vanishes then  

would be the closest approximation of the impulse response. So let 

h u V

z z f

ξ η⎝ ⎠⎣ ⎦

+ − =
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1 2

1 1 1 0The classical   of the geometrical optics:  has lens law
z z f
+ − = to 

be satisfied for image formation.



5.3.2  Eliminating Quadratic Phase Factors: 
The Lens Law IIThe Lens Law II

2 2 2 2

1 22 21( ) ( )

Impulse response after application of the  :
uk k jk xj u V j z z zz z

lens law

h
ξ η

ξ η
ξ

⎛ ⎞
− + +⎡ ⎤ ⎡ ⎤ ⎜ ⎟+ +⎣ ⎦ ⎣ ⎦ ⎝ ⎠ 1 2

V y
z d d

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟∞ ⎢ ⎥⎝ ⎠⎣ ⎦∫ ∫ 1 22 12 2

2
1 2

1( , ; , ) ( , )
Depends on the Depends only on 
image location the object location

z z zz zh u V e e P x y e
z z

ξ η
λ

⎣ ⎦ ⎣ ⎦ ⎝ ⎠= ��	�
 ��	�

1 2

Approximations that will elliminate these factors:

z dxdy⎢ ⎥⎝ ⎠⎣ ⎦

−∞∫ ∫

2 2

222)  can be ignored under two conditions: 
a) if we are only interested in the intensity at the 

kj u V
ze
⎡ ⎤+⎣ ⎦

Ul(x,y)

U’l(x,y)

Ui(u,V)U0(ξ,η)

object plane

2 2

, then phase distribution is 

unimportant. most of the time this is the case 
k ⎡ ⎤ zObject

R=z2

2 2

22and we drop the  factor.
b) The image is measured on a shperical surface 
with radius centered at the point

kj u V
ze

z

⎡ ⎤+⎣ ⎦

where the

z1 z2
Object

The surface on which 
th d ti h

44

2with radius , centered at the pointz where the 
optical axis pierces the thin lens.

the quadratic phase 
factor on u and V is 
zero



5.3.2  Eliminating Quadratic Phase Factors III
I l ft li ti f th d li i ti thl l

2 2

21

Impulse response after application of the   and eliminating the 
quadratic phase factor dependent on the image coordinates:

kj

lens law

ξ η⎡ ⎤+⎣ ⎦
u Vjk x yξ η⎡ ⎤⎛ ⎞ ⎛ ⎞

− + + +⎢ ⎥⎜ ⎟ ⎜ ⎟∞ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦∫ ∫12
2

1 2

1( , ; , )
Depends only on 
the object location

j
zh u V e

z z

ξ η
ξ η

λ
⎣ ⎦

= ��	
1 2 1 2

2 2

2

( , ) z z z z

kj

P x y e dxdy

ξ η

∞ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

−∞

⎡ ⎤+⎣ ⎦

∫ ∫�


( ) ( ) ( )

12

;

3)  this term will affect the image severly through the 
convolution operation in calculating the image:

j
ze

U u V h u V U

ξ η

ξ η ξ η

⎣ ⎦

∞
= ∫ ∫ d dξ η( ) ( ) ( )0, , ; , ,iU u V h u V Uξ η ξ η

−∞
= ∫ ∫ .

Under 3 conditions this term can be ignored: 
3.a) the object exists on a shperical surface 

d dξ η

Ul(x,y)

U’l(x,y)

Ui(u,V)U0(ξ,η)

1with radius , centered on the point where the 
optical axis pierces the thin lens. 
This rarely happens

z

in reality. R=z2
R=z1
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This rarely happens in reality.
z1 z2

Object



5.3.2  Eliminating Quadratic Phase Factors IV
Impulse response after application of the and quadratic phaselens law

2 2

1121( ; ) ( )

Impulse response after application of the   and quadratic phase 
factor dependent on the image coordinates:

k jkj zz

lens law

h u V e P x y e
ξ

ξ η
ξ η

− +⎡ ⎤+⎣ ⎦
= 2 1 2

u Vx y
z z z dxdy

η⎡ ⎤⎛ ⎞ ⎛ ⎞
+ +⎢ ⎥⎜ ⎟ ⎜ ⎟∞ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦∫ ∫2

1 2

( , ; , ) ( , )
Depends only on 
the object location

h u V e P x y e
z z

ξ η
λ ��	�


3.b) the object is illuminated by a spherical 
wave that is converging towards the point

dxdy
−∞∫ ∫

Ui(u,V)U0(ξ,η)

wave that is converging towards the point 
that optical axis pierces the lens. 
A proper illumination can make this happen. 
The spherical wave illumination results in 
Fourier transform of the object apear in the pupil plane of the lens.
The quadratic phase factor will cancell by the quadratuic phase factor of this 

z1 z2
Object

( )
1

2 2

-
This term with conversion of

 and  and 

converging spherical wave (simmilar to the case of transparency behind the lens:

u V d z

kj u V

ξ η→ → →

+
⎧ ⎫⎡ ⎤

�������
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( )
( )

( )
22

, , ( ),
j u V

d j
d

f A
A e f f fU u V t P e

j d d d d

π
λξ η ξ η

λ

+
−⎧ ⎫⎡ ⎤⎛ ⎞= ⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

( )u v
d d

ξ η
ξ η

∞
+

−∞
∫ ∫



5.3.2  Eliminating Quadratic Phase Factors V
Impulse response after application of the   and quadratic phase lens law

2 2

112
2

1 2

1( , ; , ) ( , )
Depends only

factor dependent on the image coordinates:
k jkj zzh u V e P x y e

z z

ξ
ξ η

ξ η
λ

− +⎡ ⎤+⎣ ⎦
= ��	�


2 1 2

u Vx y
z z z dxdy

η⎡ ⎤⎛ ⎞ ⎛ ⎞
+ +⎢ ⎥⎜ ⎟ ⎜ ⎟∞ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

−∞∫ ∫
(u,V)(ξ,η)

1 2 Depends only 
on the object location

z zλ

3.c) The phase of the quadratic factor changes by an 
amount that is only a small fraction of a radian within 
the region of the object that contributes signifi

( )
( )

,

,

cantly
to the field at the particular image point . 

This is true most of the time, otherwise the image at  would be very blurred.

u V

u V

z1 z2
Object

( )
2 2

12

,, g y

In that case the   can be replaced by a single phas
kj
ze

ξ η⎡ ⎤+⎣ ⎦ e that depends on the 
coordinates of the image point of the interest but not the object point. 

2 2
2 2

2
11 22 2

1

g j

     where  is the magnification of the system.

N thi

k u Vk jj z Mz ze e M
z

ξ η
⎡ ⎤+

⎡ ⎤ ⎢ ⎥+⎣ ⎦ ⎢ ⎥⎣ ⎦→ = −

h f t b d d if i t t d l i i t it
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Now this new p

1
4

hase factor can be dropped if we are interested only in intesity. 

Practical examination shows that this holds for: object size (lens aperture size)<



5.3.2  Eliminating Quadratic Phase Factors
( ) ( ) ( )0, , ; , ,iU u V h u V U d dξ η ξ η ξ η

∞

−∞
= ∫ ∫

( )2 22 2 2 2

1 22 1

1 1 1
22 2

2
1 2 2 3

1( , ; , ) ( , )
Approximation   Approximation Depends on the lens coordinates

Lens law took

kk k j x yj u V j z z fz zh u V e e P x y e
z z

ξ η
ξ η

λ

∞

⎡ ⎤⎛ ⎞
+ − +⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎜ ⎟+ +⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦=

∫ ∫

��	�
 ��	�

1 2 1 2

 care of it

R lt f ll f th i ti th i l f thi iti h i l l i

u Vjk x y
z z z ze dxdy
ξ η⎡ ⎤⎛ ⎞ ⎛ ⎞

− + + +⎢ ⎥⎜ ⎟ ⎜ ⎟∞ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
−∞∫ ∫ ����	���


1

2
1 2

1( , ; , ) ( , )

Result of all of the approximations on the impulse response of a thin, positive, spherical lens is:

jk
zh u V P x y e

z z

ξ

ξ η
λ

−

≈ 2 1 2

h i h

u Vx y
z z z dxdy

η⎡ ⎤⎛ ⎞ ⎛ ⎞
+ + +⎢ ⎥⎜ ⎟ ⎜ ⎟∞ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

−∞∫ ∫

( ) ( )
2

2 1
2

1 2

/

1 1( , ; , ) ( , )

together with  

h th l l i li d th t th i l f thi l

j u M x V M y
z

M z z

h u V P x y e dxdy
z z

π ξ η
λξ η

λ λ

− ⎡ − + − ⎤∞ ⎣ ⎦

−∞

= −

≈ ∫ ∫
i th F h fwhen the lens law is applied we see that the impulse response of a thin lens 

1

1 ,

is the Fraunhofer 

diffraction pattern of the lens aperture, apart from a scaling factor of  centered on the

image coordinates of The simplifications used to arrive at this conclusion a
z

u M V M
λ

ξ η= = re:, .image coordinates of   The simplifications used to arrive at this conclusion au M V Mξ η= =

1 21/ 1/ 1/

re: 

1) Lens law holds 
2) Only intensity of image matters or the image plane is spherical with the radius of curvature 

equal to the image-lens distance.

z z f+ =
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equal to the image lens distance.

3) Object is on a spherical surface 

1/ 4

or illumination is done by a spherical wave converging with 

radius of curvature equal to the object-lens distance or object size  of the lens aperture size.<



5.3.3  The Relation Between Object and Image
For a perfect imaging system, image is a magnified/demagnified replica of the object. 

( ) 0
1, ,

In Geometrical optics image and object are related by:

i
u VU u V U

M M M
⎛ ⎞= ⎜ ⎟
⎝ ⎠

We can show that the wave optics image 

( ) ( )
2

21 1lim ( ; ) lim ( )

reduces to the geometrical optics image 
as 0. Start from impulse response (approximate form) of a positive lens:

j u M x V M y
zh u V P x y e dxdy
π ξ η

λ

λ

ξ η
− ⎡ − + − ⎤∞ ⎣ ⎦

→

≈ ∫ ∫ 2

0 0
1 2

lim ( , ; , ) lim ( , )

Change variables:

h u V P x y e dxdy
z zλ λ

ξ η
λ λ −∞→ →

≈ ∫ ∫

( ) ( )

2 2

2 ' '2

' / , ' /

lim ( ; ) lim ( ' ' ) ' '

  
j u M x V M y

x x z y y z
zh u V P x z y z e dx dyπ ξ η

λ λ

ξ η λ λ
∞ − ⎡ − + − ⎤⎣ ⎦

= =

≈ ∫ ∫ 2 10 0
1

2 1

lim ( , ; , ) lim ( , )

0 ( ' , ' )As  the aperture function  gets wider. 
So at the limit the aperture is infinitly wide. We 

h u V P x z y z e dx dy
z

P x z y z

λ λ
ξ η λ λ

λ λ λ

−∞→ →
≈

→

∫ ∫

2 1/can replace it with 1. Difining  M z z=

( ) ( )

( ) ( )

2 ' '

0 0

1lim ( , ; , ) lim 1. ' ' ,

lim ( ; )

Fourier transform of unity

we get:  j u M x V M y u Vh u V M e dx dy
M M M

U V h V U

π ξ η

λ λ
ξ η δ ξ η

ξ η ξ η

∞ − ⎡ − + − ⎤⎣ ⎦
−∞→ →

∞

⎛ ⎞≈ ≈ − −⎜ ⎟
⎝ ⎠∫ ∫

∫ ∫

�������	������


d dξ η
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( ) ( )00
, lim ( , ; , ) ,iU u V h u V U

λ
ξ η ξ η

−∞ →
= ∫ ∫

( ) ( ) ( )0 0
1 1, , , , ,i i

d d

u V u VU u V U d d U u V U
M M M M M M

ξ η

δ ξ η ξ η ξ η
∞

−∞

⎛ ⎞ ⎛ ⎞= − − → =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫



Effect of diffraction on the relation between 
object and image Iobject and image I

( ) ( )
2

2

1 2

1 1( , ; , ) ( , )

Impulse response of the  imaging system: 
j u M x V M y

zh u V P x y e dxdy
z z

π ξ η
λξ η

λ λ

− ⎡ − + − ⎤∞ ⎣ ⎦

−∞
≈ ∫ ∫

1 2

This is impulse response of a linear space-variant system. So the object and image are 
related by a su

z zλ λ

perposition integral not a convolution. The space-variant atribute is due to 
magnification and inversion To transform this relationship to a convolution:magnification and inversion. To transform this relationship to a convolution:
change to a normalized set of object-plane var

( ) ( )
2

2

2

,

1( , ; , ) ( , )

iables:  
j u x V y

z

M M

h u V P x y e dxdy
π ξ η

λ

ξ ξ η η

ξ η
λ

⎡ ⎤− − + −∞ ⎣ ⎦

∞

= =

= ∫ ∫
� �

� �

� �

( )
2

1 2

,This relation has a convolution form which depends on only 

Another set of normalizing coordinates for further sim

z z

u V

λ

ξ η

−∞

− −

∫ ∫
� �

1plification: x yx y h h= = =�� �Another set of normalizing coordinates for further sim

( ) ( )

2 2

2
2 2

, ,
| |

( , ; , ) | | ( , ) | |

1

plification: 

j u x V y

x y h h
z z M

h u V M P z x z y e dxdy M hπ ξ η

λ λ

ξ η λ λ

ξ

∞ ⎡ ⎤− − + −⎣ ⎦
−∞

= =

⎡ ⎤⎛ ⎞

∫ ∫
� �� � �� � � � � �

� �
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( )

0

,

1, , ,

 image from Geometrical optics analysisg

i

U u V

U u V h u V U
M M M

ξ ηξ η
⎡ ⎤⎛ ⎞

= − − ⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
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d dξ η
∞

−∞∫ ∫ � �
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Effect of diffraction on the relation between 
object and image II
( ) ( ) ( ) ( ) 0

1, , , , ,
Effect of diffraction Image by 

 where i g gU u V h u V U u V U u V U
M M M

ξ η⎛ ⎞
= ⊗ = ⎜ ⎟

⎝ ⎠

� ��
��	�
 ��	�


object and image II

( )

g y
on the image Geometrical optics

analysis 

The point-spead function introduced by diffraction is then:

� ( ) ( )2 1j ux Vy x yπ∞ ⎡ + ⎤⎣ ⎦∫ ∫
� � �( ) 2, ,h u V P z xλ λ= �( ) ( )2

2
2 2

1, ,
| |

where 

Conclusions: 
1) The ideal image produced by a diffraction limitted optical system (free

j ux Vy x yz y e dxdy x y h h
z z M

π

λ λ
⎡− + ⎤⎣ ⎦

−∞
= = =∫ ∫ � � � � �

1) The ideal image produced by a diffraction-limitted optical system (free
from aberrations) is scaled and inverted version of the object.
2) The effect of diffraction is to convolve that ideal image with the

Fraunhofer diffraction pattern of the lens pupil.
Convolution smooths the image and attenuates the fine details of the object.
We will talk about applications of filtering to imaging systems in chapter 6
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We will talk about applications of filtering to imaging systems in chapter 6. 



5.4  Analysis of Complex Coherent Optical 
SystemsSystems
• A certain “operator” notation will be useful to analyze 

complicated optical systems with many lenses and free-
space regions. 
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5.4.1  An operator notation 

Several operator approaches has been introduced to analyze complicated optical 
systems. We follow the approach introduced by Nazarathy and Shamir:

Simplifying assumption: 
1) Monochromatic systems.
2) Coherent systems.) y
3) Only paraxial conditions will be considered.
4) One-dimensional treatment of the system good for the problems that their 
aperture function is separable in rectangular coordinatesaperture function is separable in rectangular coordinates.
Opar

[ ]{ }
ator: represents a fundamental operation of the system. 

Notation: Operator parameters dependent on the geometry Quantity 
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5.4.1  The basic operators useful to us

[ ] ( ){ } ( )
2

21)

Four operators that are sufficient to analyze most optical systems:

 Multiplication by a quadratic phase exponential: 
kj cx

c U x e U x=Q

[ ] [ ]12 / ,

2)

Where  and  is an inverse length and  

 Scaling by

k c c cπ λ −= = −Q Q

[ ] ( ){ } ( )1/ 2 a constant: b U x b U bx=V { }
[ ] [ ]

( ){ } ( ) ( )

1

2

1/

3)

Where  is dimensionless and 

Fourier transformation:  j fx

b b b

U x U x e dx G fπ

−

∞ −

=

= =∫

V V

F ( ){ } ( ) ( )

( ){ } ( ) ( ){ } ( )

{ } ( )22 1

1 2 1

)

1

 and j fx

kj x x

f

G f U f e df U x U xπ

−∞

∞− −

−∞

− −

= =

∫
∫F FF

∞

∫[ ] ( ){ } ( ) ( )2 12
1 1

14) Free space propagation: 
j x x

dd U x U x e dx
j dλ

=R 1

2Where distance of propagation,  coordinate after propagation.d x

∞

−∞

= =

∫
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5.4.1  Relationship among the basic operators 
[ ] [ ] [ ][ ] [ ] [ ]

[ ]

[ ]

2 1 2 1

1 a statement of the similarity theorem of the Fourier analysis

t t t t

t
t

=

⎡ ⎤= ⎢ ⎥⎣ ⎦

V V V

FV V F  

[ ]
[ ] [ ] [ ]
[ ]

2 1 2 1

1 2

1          follows from the Fourier inversion theorem   

 Free propagation in 

c c c c

d dλ−

= −

= +

⎡ ⎤= −⎣ ⎦

FF�V

Q Q Q

R F Q F space can be analyzed by Fresnel [ ] ⎣ ⎦

[ ] [ ] [ ]

diffraction or by a series of Fourier transformation, multiplication by a quadratic
phase factor, and inverse Fourier transformation.

b h bc⎡ ⎤Q V V Q iti th d fi iti[ ] [ ] [ ] 2 can be shown by wcc t t
t
⎡ ⎤= ⎢ ⎥⎣ ⎦

Q V V Q

[ ] 1 1 1

riting the definitions

  Fresnel diffraction operation is equivalent to d
d d dλ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R Q V FQ

multiplication by a quadratic phase factor, properly scaled Fourier transform,
followed by multipl

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

[ ] [ ]1 1

ication by a quadratic-phase exponential.

f f
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥V F R Q R
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[ ] [ ]

Fields across the front and back focal planes of a positive lens are related 
by a properly scaled Fourier transform with no quadrati

f f
f fλ

= −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

V F�R Q R

c phase exponential.



Relations between the basic operators

d⎡ ⎤ ⎡ ⎤

V F Q R

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

2
2 1 2 1 2

2
2

1

1 1

dt t t t t t c t c t t d t
t t

ct c d d
t

λ
λ

⎡ ⎤ ⎡ ⎤⎡ ⎤= = = =⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = − = − = −⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

V V V V V F FV V Q Q V V R R V

F FV V F FF�V Q F�FR FR Q F

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] ( )

[ ] ( )

11

2 1 2 12 2 111

c d d cc cc t t c c c c c
t cd c dλ

−−

−−

⎣ ⎦ ⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦⎡ ⎤ ⎡ ⎤= = − = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎡⋅ + ⋅ +

⎣

Q R R
Q Q V V Q Q F�FR Q Q Q

V Q ⎤
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[ ] [ ] [ ] [ ]
[ ] [ ] ( )

( ) ( )
[ ] [ ] [ ]

11
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1 2 1 211 11

d c c d
d t t t d d d d d d d

cd d c
λ
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⎦
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⎣ ⎦
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5.4.2  Application of the Operator Approach 
to Some Optical Systems Ito Some Optical Systems I

2 1

1

Example 1) Two spherical lenses each with focal length of  and separation of 
Goal: to determione the relationship between the complex field across  and .

f f
S S

⎡ ⎤ 1⎡ ⎤1

Le

The reletionship operator: 
f

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
S Q [ ]N

1

1 1 1

Propagation
ns 2 Lens 1

f
f

⎡ ⎤
−⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

��	�
 ��	�

R Q

[ ] 1 1 1

1 1 1 1 1 1 1 1 1

We can simplify the  using   

 using 

d
d d d

f f f f f f f f f

λ

λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡

= − − − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

S R Q V FQ

S Q Q V FQ Q Q Q Q Q 1
⎤
=⎥

⎦
g

f f f f f f f f fλ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

Q Q Q Q Q Q Q Q

1 11 1   this is equivalent to a scaled Fourier transform 
f fλ λ

⎥
⎦

⎡ ⎤ ⎡ ⎤
= ⋅ ⋅ → =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
S V F S V F

without a quadratic phase factor. This is similar to 
the focal-plane-to-focal-plane relationship seen earlier:

1 kj xu−∞

∫

Sl S2f
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fU ( ) ( )0
1

12

Field just to Field just to 
the left of Lthe right of L

j
fu U x e dx

fλ
∞

−∞
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L1 L2



5.4.2  Application of the Operator Approach 
to Some Optical Systems IIto Some Optical Systems II

1 1( ).
Example 2) An input transparency located at a distance  from a converging lens with focal 
length of  illuminated by a point source located at a distance  from the lens 
Location of the outpu

d
f z z d>

2t of interest : on the plane of image of the point source. Where thezLocation of the outpu

[ ] [ ]N

2

1 2

2
1

1/ 1/ 1/

1 1

t of interest : on the plane of image of the point source. Where the 
usual lens law holds 

z
z z f

z d
f z d

+ =

⎡ ⎤⎡ ⎤
= − ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦�	
S R Q R Q

d

N
1PropagationPropagation

Effect of the Input is illuminat
lens

f z d⎣ ⎦ ⎣ ⎦�	

��	�


ed by a diverging 
spherical wave that affects it by a 
quadratic phase factor

Applying the the lens law:

��	�


z2z1

[ ] [ ]

[ ] [ ] ( ) ( )

2
1 2 1

11

1 1 1

1

  Using the table we simplify thisz d
z z z d

d c c d cd
−−

⎡ ⎤ ⎡ ⎤
= − −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤= + ⋅ +⎢ ⎥⎣ ⎦

S R Q R Q

R Q Q V ( ) 11 1d c
−− −⎡ ⎤⎡ ⎤ ⋅ +⎢ ⎥⎣ ⎦ ⎣ ⎦

R[ ] [ ] ( ) ( )1d c c d cd+ +⎢ ⎥⎣ ⎦
R Q Q V ( )

[ ]
1 1 1

1 2 2
2 2

1 2 1 2 1 2 1 2

1 1 1 1 11 1

d c

z z zz z
z z z z z z z z

− − −

+⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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R

R Q Q V R
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[ ] [ ]1 2 1
2 12

1 2 2 2

1 1 z z zz z
z z z z
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5.4.2  Application of the Operator 
Approach to Some Optical Systems III

[ ] [ ] [ ]1 2 1 1 2 1
1 12 2

2 2 1 2 2 1

1 1z z z z z zz d d z
z z z d z z z d
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S Q V R R Q Q V R Q

Approach to Some Optical Systems III
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1 1 1

1 1

Next we use  to simplify d d z
d d d

d z
d d

λ

λ
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[ ] [ ] [ ] 2Finaly using  we flip cc t t
t
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the orders of  and 
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⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+
= −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Q V

S Q Q V V F�

59

( ) ( )

( ) ( )

2 2
2 2 1 2 1

2
1 2 1 1

2 2
2 2 1 2 1

1

z z d z z d z

z z z z
z z d z z d z

λ

λ

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+

= + −⎢ ⎥ ⎢ ⎥
− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

S Q V  F



5.4.2  Application of the Operator 
Approach to Some Optical Systems IV

( )
( ) ( )

( ) ( )

1 2 1 2 1
2
2 1 2 1

:Comparing this to the conventional relation ship between and

d z z z z z
z d z z z d

U U u

λ
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⎡ ⎤ ⎡ ⎤+ −
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Approach to Some Optical Systems IV

( ) ( )

( )
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1 2 1 2
2 12 1

2 1

1 2

22

2 1

:Comparing this to the conventional relation ship between  and 
z z d z zkj zz d z j u

z z d

U U u

eU u U e d
d

π ξ
λ

ξ

ξ ξ
λ

⎡ ⎤+ −
⎢ ⎥ ⎡ ⎤− ∞⎢ ⎥ −⎣ ⎦ ⎢ ⎥

−⎢ ⎥⎣ ⎦= ∫( )2 1

1
Fourie

z z d
z

λ −∞− ∫
r transform of the input amplitude distribution
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Some results from this example that are more general than just this example:
) F i t f l d t t b th
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f l l f th l th ta) Fourier transform plane need not to be the focal plane of the lens that 
performs the transformation.
b) Fourier trnsform always appears in the plane where the source is imaged.
) Q d ti h f t di th F i t f ti i lc) Quadratic-phase factor preceding the Fourier transform operation is always

the quadratic-phase factor that would result at the transform plane from a point
source of light located on the optical axis in the plane of input transparency. 
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Operator technique allows a more mathematical analysis of the complicated 
systems but it is more abstract than the diffraction integrals and furthere away
from the physical analysis.


