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Frequency Analysis of Optical Imaging 
SystemsSystems
• Frequency analysis and linear systems theory are relatively new to 

optics but they have a very fundamental place in the theory of 
imaging systemsg g y

• Introduction of Fourier analysis to optical systems
– Earnest Abbe (1840-1905) and Loard Rayleigh (1842-1919) Laid 

the foundations of the Fourier optics p
– P. M.Duffieux in France in1930s published a book on Fourier 

optics in 1946 translated to English “The Fourier transform and 
its applications to optics” Wiley 1983

– Otto Schade in US in 1948 employed methods of linear system 
theory in analysis and improvement of TV camera lenses.

– H.H. Hopkins in UK used transfer function methods for the 
assessment of the quality of optical imaging systemsassessment of the quality of optical imaging systems

• This chapter: 
– Coherent imaging systems important in microscopy, holography

Incoherent imaging s stems ider applications e er thing else
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– Incoherent imaging systems wider applications everything else



6.1  Generalized treatment of optical 
imaging systemsimaging systems
• Treatment of more general lens systems
• Treatment of 

– Quasi-monochromatic systems 
• Spatially coherent 
• Spatially incoherent
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6.1.1  A generalized model
• System: some positive and negative lenses with various distances between them y p g

possibly thick.
• Assumption: the system ultimately produces a real image in space.
• If a system is producing virtual images, it can be converted to reals image by lens. 
• All imaging elements are lumped into a single “black box” (aggregate system)• All imaging elements are lumped into a single black box  (aggregate system).
• The aggregate system is defined by its “terminal properties” at the planes 

containing the entrance and exit pupils.
• Sources of the diffraction effects within the system: entrance and exit pupils 

(conjugate planes) that are images of the physically limiting apertures(conjugate planes) that are images of the physically limiting apertures.
• We assume the passage of light between the entrance and exit pupils is properly 

described by geometrical optics

Geometrical optics Diffraction affects Diffraction affects 
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Diffraction limited imaging systems
• The following is true for a diffraction limited imaging system:• The following is true for a diffraction-limited imaging system: 

– Spherical wave of a point-source is converted by the system to a  perfectly 
spherical wave that converges towards the image point on a image plane. 

– Location of the image points on the entire image plane is related to the location 
of the object points on the object plane by a single scaling factorof the object points on the object plane by a single scaling factor. 

– Location of the image plane stays the same for all points on the image field of 
interest.

– Terminal property of a diffraction limited system: converting a diverging 
spherical wave at the entrance pupil to a converging spherical wave at the exitspherical wave at the entrance pupil to a converging spherical wave at the exit 
pupil. 

– A system can be diffraction limited only over a limited region of the object 
plane.

• Aberration: if the wavefront for a point source on the image plane at the exit pupil• Aberration: if the wavefront for a point source on the image plane at the exit pupil 
departs significantly from an ideal spherical wave, then the system is said to have 
aberration. 

• Aberrations lead to defects in the spatial-frequency response of the imaging 
systemsystem. 

a Ma ≠Ma ≠Ma
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6.1.2 Effects of diffraction on the image I
• For determining the source of diffraction in imaging systems two view 

points are common:
– The finite entrance pupil seen from the object plane (Abbe 1873)p p j p ( )
– The finite exit pupil seen from the image plane (Rayleigh 1893)

• Because the two pupils are conjugate of each other (image of each 
other) the two view points are equivalent

Certain portions of diffracted Un-intercepted components generated by 

other) the two view points are equivalent. 

Abbe’s view point

components (higher orders) 
are interrupted by finite 
entrance pupil.

high frequency components of the object 
amplitude transmittance.

Object: diffraction grating
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6.1.2 Effects of diffraction on the image II 
Rayleigh’s viewpoint

( ) ( ) ( )0-
, , ; , ,

Image amplitude superposition integral: 

 iU u V h u V U d dξ η ξ η ξ η
∞

∞
= ∫ ∫

Rayleigh s viewpoint 

( )
-

Amplitude distributionAmplitude at image coordinates u,V  
transmitted by the objectin response to a point-source at ( , ) ξ η

∞∫ ∫

When there is no aberration  arises from a spherical wave converging 
f th it il t d th id l i i t t d

h
ξfrom the exit pupil towards the ideal image point at  and 

The light amplitude about the ideal image point is the Fraunhofe
u M V Mξ η= =

r diffraction

pattern of the exit pupil, centered on image coordinates  and u M V Mξ η= =
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   is the pupil f
  outside the aperture
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⎧

= ⎨
⎩

unction and 

is the distance from the exit pupil to the image planez
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,
 is the distance from the exit pupil to the image plane

 are the coordinates in the plane of exit pupil
The quadratic phase factors in the object and image planes are ignored.

iz
x y



6.1.2 Effects of diffraction on the image III
To achieve space-invariance in the imaging operation, we need to remove 
effects of magnification and inversion from the equation for  by the following 
transformation: 

h
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, ,
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= =

− − =
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izλ
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Ideal image: the geometrical optics prediction of the image for a perfect system
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Image by a 
diffracti

iU u V ( ) ( ), ,
impluse response or Fraunhofer image predicted by 

on-limited system diffraction pattern of the exit pupil geometrical optics

gh u V U ξ η= ⊗
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6.2.3  Polychromic illumination: the coherent 
and incoherent cases (heuristic approach)

There is no perfectly monochromatic source in nature or in the lab. 
The time variations of illumination amplitude and phase have statistical nature. 
These fluctuations influence behavior of the imaging systems. 
Monochromatic case: the amplitude and phase of the field presented by a complex phasor 
that is function of the space coordinates (no time dependence).
Polychromatic narrowband case: the amplitude and phase of the field presented by a

complex time-varying phasor that is function of the space coordinates and time.

Only statistical techniques can produce a satisfactory explanation of the image produced 
by such sources. 
1) Spatially coherent sources: the phasor amplitudes of the field at all object points and 

thus the various impulse responses on the image plane vary in unison or correlate

( )( )2

d fashion.

A coherent imaging system is linear in complex amplitude and the i iU U I U= → =∑ ∑( )( )g g y p p

monochromatic analysis holds. The  is a time-invariant phasor that depends on the relative 
phases of the light. 

i i

U

∑ ∑

A coherent source can be obtained from lasers and some arc lamps.
2) Spatially incoherent sources: the phasor amplitudes of the field at all object points vary in
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2) Spatially incoherent sources: the phasor amplitudes of the field at all object points vary in 

totally uncorrelated fashin. Obtained 

( )2 .

from diffused or extended sources. 

An incoherent source is linear in intensity or power i iI I U= =∑ ∑



6.2.3  Polychromic illumination: the coherent 
and incoherent cases (rigorous approach)and incoherent cases (rigorous approach)
The phasor representation is obtained by suppressing the positive frequency components 
of the cosinosoidal field and doubling the negative frequency components. 
Polychromatic wave represented by only negative-frequency components: y p y y

( ) ( )

( )

2_ , ( , ) ( , ) ,
g q y p

 where  is the time-varying phasor representation of  
Where  is the center frequency.
For a narrowband system, , the amplitude impulse 

j tu P t U P t e U P t u P tπν

ν
ν ν

−=

Δ << response dose not ( )
change dramatically for the various frequencies i.e. we can ignore the wavelength- 

dependence of the spread of the Fraunhofer diff. pattern of a point source which is ok for 
narrow-band signals. Now we can express the time-varying phasors representing the 
image as convolution of a wavelength-independent impulse response with the 

time-varying phasor representation of the object.

iU ( ) ( ) ( ), ; , , ;u V t h u V U tξ η ξ η τ
∞

= − − −∫ ∫ d dξ ηiU ( ) ( ) ( ), ; , , ;
Time varying phasor Wavelength-independent Time varying phasor representation 
representation of the image impulse response of the object in reduced coordinate

gu V t h u V U tξ η ξ η τ
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6.2.3  Polychromic illumination: the coherent and 
incoherent cases (rigorous approach)

( ) 2
, ; ,

(~ 50 )

To calculate the image intensity we must time average the instantaneous  

intensity represented by  due to the fact that the detector integration

time is extremely long compared to the
iU u V t

ps reciprocal of the bandwidth

( g pp )

(~ 50 )time   is extremely long compared to theps

( ) ( )

2

2

( 1 , 1/ / 100 )

, , ;

reciprocal of the bandwidth 
even for narrowband optical sources   . 

Therefore  the time average of instantaneous intensity.i i
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For a fixed image point,  is non-zero only for small region about the ideal image 

point. So  and  are very close to ea

h

ξ η ξ η ch other and the difference 

between the time delays and is negligible under the naorrowband conditionτ τ
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( ) ( ) ( )*
1 1 2 2 1 1 2 2, ; , , ; , ;

t
re  is the "mutual intensity" and 

it is a measure of the spatial coherence of the light at the two object points.
g g gJ U t U tξ η ξ η ξ η ξ η=



6.2.3  Polychromic illumination: the coherent and 
incoherent cases (rigorous approach)( g pp )

Tim

For a perfectly coherent illumination, the time-varying phasor amplitudes across 

the object plane vary only by a complex constant. So we can write:
e varying phasor

amplitude at the origin

( ) ( ) ( )
1 1 1 1

0,0;
, ; ,

Complex Constant

 g
g g

U t
U t Uξ η ξ η=

( )
( ) ( ) ( )

( )
2 2 2 21/ 2 1/ 22 2

0,0;
, ; ,

0,0; 0,0;

amplitude at the origin

Complex Constant

and g
g g
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U t
U t U

U t U t
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1 1 2 2 1 1 2 2, ; , , ,

, ,

 1  the new "mutual intensity" g g g

i
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ξ
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2

2

( , ) , Coherent caseg iV U d d U u Vη ξ η ξ η
∞

− = ←∫ ∫( ), ,i ξ( ) ( )
-

( , ) ,
Amplitude convolution equation

When the object illumination is perfectly incoherent, the phasor amplitudes acros 

the object vary in statistically inde

g iη ξ η ξ η
∞∫ ∫

pendent fashion. This property is represented by: j y y

( )*
1 1 2 2 1 1 1 2 1 2( , ; ) ( , ; ) ( , ) ,

Real constnt
Intensity at point 1delta function vanishes as points 1 and 2 separate

p p p y p y

g g gU t U t Iξ η ξ η κ ξ η δ ξ ξ η η= − −

For incoherent illumination the image intensity is found as a convolution of the 
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6.2  Frequency response for diffraction-
limited coherent imaginglimited coherent imaging
A coherent imaging system is linear in complex amplitude.
Therefore the intensity mapping will be nonlinear.Therefore the intensity mapping will be nonlinear.
The frequency analysis should be applied to the linear amplitude mapping 
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6.2.1  The amplitude transfer function
Analysis of the coherent systems has yielded a space-invariant form of 
amplitude mapping. The amplitude at the image plane are convolution of 
the geometrical image amplitudes with a space-invariant impulse response. g g p p

( ) ( ) ( )
( ){ } ( ){ } ( ){ }

, , ,

, , ,

p p

i g

i g

U u V h u V U d d

U u V h u V U u V
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=

∫ ∫
F F F( ){ } ( ){ } ( ){ }
We will apply transfer-function concept to this picture. 
Defining the frequency spectra of input and output and aplitude transfer fu

g
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∫ ∫
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Applying the convolution theorem 
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X YH f f h u V e dudV
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−∞
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=

∫ ∫
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This is effect of diffraction-limited i
i X Y X Y g X YG f f H f f G f f=

maging in the frequency domaine.



6.2.1  The amplitude transfer function and 
physical characteristics of the systemphysical characteristics of the system
( ) ( ) ( )2, ,

Note  is defined as the Fourier transform of the amplitude point-spread 

X Yj f u f V
X YH f f h u V e dudV

H

π∞ − +

−∞
= ∫ ∫

function. 
We can aslo express H as the Fraunhofer diffraction pattern and is 
Fourier transform of the pupil function (eq 6-5). 
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i
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z
X Y i i X i Y

i
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∫ ∫F

1If we set  and ignore the negative signs since for all of the interesting
applications pupil fun

iA zλ =

( ) ( )
ctions are symmetric in  and . x y

H f f P z f z fλ λ=( ) ( ), ,

If the pupil function is unity within a region and zero elsewhere, then 
there exists a finite frequency band for which the diffraction-limitted 

X Y i X i YH f f P z f z fλ λ=
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imaging system passes all of the frequency components whithin that band 

without distortion. This result is for an aberration-free system.



6.2.2  Examples of amplitude transfer functions
Frequency response of diffraction-limited coherent imaging systems: 

( )

2

,
2 2

q y p g g y
1) A square with width of w

x yP x y rect rect
w w

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Using  the amplitude transfer function is:X Y i X i Y

X Y
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⎝ ⎠ ⎝ ⎠
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⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=

( )

2 2

2 2

,

2) A circular aperture of radius w x y
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w
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⎜ ⎟
⎝ ⎠
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⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
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6.3  Frequency response for diffraction-
limited incoherent imaginglimited incoherent imaging

The relationship between the pupil and amplitude transfer function in 

( ) ( ), ,coherent case: 

Goal: to find the releationship between the amplitude transfer function 
X Y i X i YH f f P z f z fλ λ=

and the system pupils for incoherent illumination. This may not be as 
direct a relationship as that of the coherent case.
Systems: only diffraction limittedSystems: only diffraction-limitted. 
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6.3.1  The optical transfer function
Incoherent (illumination) imaging systems are linear in intensity and obey the:

( ) ( ) ( )
2

, , ,

Intensity convolu

C t t

Incoherent (illumination) imaging systems are linear in intensity and obey the: 

i gI u V h u V I d dκ ξ η ξ η ξ η
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= − −∫ ∫

tion integral

Constant
Ideal image intensityIntensity impulse response
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We define the normalized frequency spectra of  and  as:
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g i

j f u f V

I I

I u V e dudVπ∞ − +∫ ∫( )
( ) ( )

( )

,
,

,
Zero frequency value of the spectra 

X Y

g

j f f
g

g X Y

g

I

I u V e dudV
f f

I u V dudV
−∞

∞

−∞

= ∫ ∫
∫ ∫
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Zero frequency value of the spectra 

Maximum valule of the Furier transform of any real and nonnegative function 

Such as occures at the oringin T

iI

I I

−∞∫ ∫

hat maximum value is chosen as the
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( ),Such as  occures at the oringin. Tg iI I hat maximum value is chosen as the 

normalization constant. This constant is related to the background light and 
contrast of the image. 



6.3.1  The optical transfer function
W d fi th li d t f f ti f th t

( )
( ) ( )

( )

2 2

2

,
,

We define the normalized transfer function of the system
X Yj f u f V

X Y

h u V e dudV
f f

π∞ − +

−∞
∞= ∫ ∫

∫ ∫
H ( )

( ) 2
,

Zero frequency value of the spectra 

Apply the convolution theorem to 
h

h u V dudV
∞

−∞∫ ∫

( ) ( ), ,

pp y

iI u V h u Vκ ξ η
−

= − − ( )
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2
,

We get:

gI d d

f f f f f f

ξ η ξ η
∞

∞

=

∫ ∫
G H G( ) ( ) ( )

( )

, , ,

,

We get: 
Based on an international agreement:

 is known as Optical Transfer Function (OTF) of the system.

i X Y X Y g X Y

X Y

f f f f f f

f f

=� �G H G

H ( )
( ),  is known as Modulation Transfer Function (MX Yf fH TF) of the system

that specifies the complex weighting factor applied by the system to the 
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( ), ,frequency component at  relative to the weighting factor applied
to the zero-frequency component.

X Yf f



6.3.1  The optical transfer function
The relationship between the OTF and MTF through h

( ) { } ( )
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Using the Rayleigh's (Parseval's) theorem and autocorrela
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H

Autocorrelation function of the amplitude transfer function of the coherent system

expression of: 

( )
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2 2 2 2,

,OTF
I h t

X Y X Y

X Y

f f f fH p q H p q dpdq
f f

H p q

∞

−∞
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Incoherent 
system

.

Normalization

This equation is the primary link between the coherent and incoherent 

systems and it is valied for systems with and without aberrations



6.3.2  General properties of the OTF I
Some simple and elegant properties of the OTF:
OTF is a normalized autocorrelation function.

f f f f⎛ ⎞ ⎛ ⎞

( )
( )

*

2

, ,
2 2 2 2,

,

X Y X Y

X Y

f f f fH p q H p q dpdq
f f

H p q dpdq

∞

−∞

∞

⎛ ⎞ ⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

∫ ∫

∫ ∫
H

( )
( )1) 0,0 1                           (For pr

−∞

=

∫ ∫
H

( ) ( )*

0, 0)

2) , ,

oof substitute  

   (For proof use "Fourier transform of a real 
X Y

X Y X Y

f f

f f f f

= =

− − =H H

( ) ( )3) , 0,0

                                              function has Hermitian symmetry")

           (For pX Yf f ≤H H

( ) ( ) ( )
roof use the Schwarz's inequality)

( ) ( ) ( )
2 2 2

, , , ,If  and  are any two complex valued functions of  then

 

X p q Y p q p q

XYdpdq X dpdq Y dpdq≤∫ ∫ ∫ ∫ ∫ ∫
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*The equality holds ony if  where  is a complex constant. Y KX K=



6.3.2  General properties of the OTF II
⎛ ⎞ ⎛ ⎞( ) ( ) *

2

, , , ,
2 2 2 2

Now let  and 

Then we find

X Y X Yf f f fX p q H p q Y p q H p q⎛ ⎞ ⎛ ⎞= + + = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2
*

2 2
*

, ,
2 2 2 2
X Y X Y

X Y X Y

f f f fH p q H p q dpdq

f f f fH p q dpdq H p q dpdq

∞

−∞

∞ ∞

⎛ ⎞ ⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞≤ + +⎜ ⎟ ⎜ ⎟

∫ ∫

∫ ∫ ∫ ∫

( ) 2

, ,
2 2 2 2

,

        

        

H p q dpdq H p q dpdq

H p q d

−∞ −∞
≤ + + − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

=

∫ ∫ ∫ ∫
2

pdq
∞

−∞

⎡ ⎤
⎢ ⎥⎣ ⎦∫ ∫

( )

*

2

, ,
2 2 2 2

1
,

 therefore

X Y X Yf f f fH p q H p q dpdq

H p q dpdq

∞

−∞

∞

∞

⎛ ⎞ ⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ≤

∫ ∫

∫ ∫ ( )

( ) ( )
( ) ( )

, 1 0,0 1

, 0,0

 using the property (1)  we getX Y

X Y

f f

f f

−∞

≤ =

≤

∫ ∫
H H

H H
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Absolute intensity of the image background is never the sam as the absolute 
intensity of the object background. The normalization has removed the information 
about the absolute intensity levels.



6.3.3  The OTF of an aberration-free system I

Up to this point we have not made any assumptions about the aberration
f th t

( ) ( )

of the system. 
Now we consider the diffraction-llimitted incoherent system:

We have for coherent systemsX Y i X i YH f f P z f z fλ λ=( ) ( ), ,We have  for coherent systems

For an 
X Y i X i YH f f P z f z fλ λ

,
incoherent system, it follows from the equation for OTF with a 

change of variables as:   X i X Y i Yf z f f z fλ λ= =

( )
( )

, ,
2 2 2 2,

i X i Y i X i Y

X Y

z f z f z f z fP x y P x y dxdy
f f

P x y dxdy

λ λ λ λ∞

−∞

∞

⎛ ⎞ ⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

∫ ∫

∫ ∫
H

( )

( ) 2

,

, ,We used 

P x y dxdy

P x y P x
−∞

=

∫ ∫
( ) ( ), since  is equal to zero or unity.y P x y
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The numinator of the OTF of a diffraction limitted incoherent

6.3.3  The OTF of an aberration-free system II

( )/ 2, / 2

The numinator of the OTF of a diffraction-limitted incoherent 
system represents the area of overlap of two displaced pupil functions:
1) One centered at   i X i Yz f z fλ λ

2) Second centered at dimetrica ( )

( )

/ 2, / 2lly opposite point 
The denuminator normalizes the area of overlap by the total area of the pupil. 

area of overlapThus

i X i Yz f z f

f f

λ λ− −

=H ( ),Thus  
total area

Figure shows a geometrical optics interpretatio

X Yf f =H

n of the OTF of a diffraction-
limitted incoherent system. This interpretation implies that OTF is always real 
and nonnegative.y y

P(x,y)

Area over which
x x

λzi|fY|
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Area over which 
value of the both 
of the aperture 
functions is oneλzi|fX|



6.3.3  The OTF of an aberration-free system III
f f f fλ λ λ λ⎛ ⎞ ⎛ ⎞

( )
( )

, ,
2 2 2 2,

,

i X i Y i X i Y

X Y

z f z f z f z fP x y P x y dxdy
f f

P x y dxdy

λ λ λ λ∞

−∞

∞

⎛ ⎞ ⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

∫ ∫

∫ ∫
H

( ),

Computational appraoch to calculation of the OTF of a complicated 
diffraction-limitted system:

y y
−∞∫ ∫

1) Inverse Fourier transform ( )
( )

,

, ,

the reflected pupil function  or 

Fourier transform the pupil function  to find the amplitude 

P x y

P x y

− −

point-spread function.
2) Take the squared magnitude of the amplitude point-spread function
to find the Intensity point spread functionto find the Intensity point-spread function.
3) Take the Fourier transform of the Intensity point-spread function to 
find the unnormalized OTF.

25

4) Normalize the OTF to unity at the origin.



6.3.3  The OTF of an aberration-free system IV
, ,

2 2 2 2
i X i Y i X i Yz f z f z f z fP x y P x y dxdyλ λ λ λ∞ ⎛ ⎞ ⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫ ∫
( )

( )
( )

2 2 2 2,
,

,Question: how a sinusoidal componet at a particular frequency pair  is generated?
A i b i t f

X Y

X Y

f f
P x y dxdy

f f

−∞

∞

−∞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

∫ ∫

∫ ∫
H

f li ht i th i l f t t t hAnswere: one way is by interference o

( )
( )

| |, | | .

| |, | |

f light in the image plane from two separate patches
on the exit pupil of the system with separation  

There is more than one pair of patches that are separated by .
Weight

i X i Y

i X i Y

z f z f

z f z f

λ λ

λ λ
of each frequency component is determined by the number of ways the correspondingWeight of each frequency component is determined by the number of ways the corresponding 

separation can be fit into the pupil. 
The number of ways a particular separation can be fit into the exit pupil is proportional to the 

area of overlap of pupils separated by this spacingarea of overlap of pupils separated by this spacing. 

sin
tan /

/
i

d m
y z

y z m d

θ λ
θ

λ

=

=

≈

y

λz||fY|
d

1

/

/

1/ /

i

m m X i

X X i

X i

y z m d

y y z d

f d z

d f z

λ

λ λ

λ λ

λ

+

≈

− = =

= =

=
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λz||fX|

d

D=zi

Separation of the patches
that light is coming from to
produce fringes of freq. 

X i

X

d f z

f

λ
z



1) 2 . OTF of a system with square pupil of width  We need to calculate w

6.3.4  Examples of diffraction-limited OTFs
( )

( ) ( )

( )

,

/ 2, / 2 / 2, / 2 .

2

the area of overlap between two pupils separated by  centered at 

 and 
i X i Y

i X i y i X i y

z f z f

z f z f z f z f

w z f

λ λ

λ λ λ λ

λ

− −

( ) 2 22 w ww z f f fλ⎧ ≤ ≤⎪
H

( ) ( )2
, i X

X Y

w z f
A f f

λ−
=

( )

( ) ( )

2

2

0

4

    ,  

                                            otherwise

Normalizing this area with the total area of  we get:

i Y X Y
i i

w z f f f
z z

w

λ
λ λ

− ≤ ≤⎪
⎨
⎪⎩

⎧

( )
( ) ( )2 2 2 2

, 2 2
0

     ,

    

i X i Y
X Y

X Y i i

w z f w z f w wf ff f w w z z
λ λ

λ λ
− −

≤ ≤
=H

2 2

                                        otherwise

f f

⎧
⎪
⎨
⎪
⎩
⎧⎛ ⎞⎛ ⎞ fX/2f0

fY/
0 1

-1

( ) 0 0

2 21 1
, 2 2

0

     ,

                                            otherwise

Where

X Y
X Y

X Y i i

f f w wf f
f f f f z z

wf

λ λ
⎧⎛ ⎞⎛ ⎞

− − ≤ ≤⎪⎜ ⎟⎜ ⎟= ⎨⎝ ⎠⎝ ⎠
⎪
⎩

=

H y

λzi|fY|

fX/2f0

( )

0

0

,
2

Where 
i

X
X Y

f
z

ff f
f

λ
=

⎛ ⎞
= Λ⎜ ⎟

⎝ ⎠
H

02
2

Yf
f

⎛ ⎞
Λ⎜ ⎟
⎝ ⎠

x
λzi|fY|
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0
22Cutoff frequency: 

In this case OTF extends twice the cutoff frequency of the coherent 
system. Compare Fig. 6.7 and 6.3

i

wf
zλ

=

λzi|fX|

λzi|fX|



2) 2 . OTF of a system with circular pupil of diameter  We need to calculate w
6.3.4  Examples of diffraction-limited OTFs

y (a)

( )/ 2, / 2 .the area of overlap between two pupils centered at 
It is not as simple as the square case. We know the OTF w

i X i Yz f z fλ λ

ill be 
circularly symmetric. So we calculate  along the x axis and then H

( ) ( )2 c
2

rotate that around the center of it.  
The shaded area in (a) is four times the  area in (b). First get B B

Area A B wθ π⎡ ⎤+ = =⎢ ⎥⎣ ⎦

( ) ( )
1

2os / 2
2

i Xz f w
w

λ
π

−⎡ ⎤
⎢ ⎥
⎣ ⎦

λzi|fX| (b)( ) ( )2π⎢ ⎥⎣ ⎦
( )

( )
2

2

2

1
2 2 2

i X i Xz f z fArea A w

π

λ λ

⎢ ⎥
⎣ ⎦

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

A Bθ

w

λzi|fX|/2

( )

( )
( ) ( )

( ) ( )
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2 2

2 2

cos / 2 1
4 2 2 2 2

,0

For general radial distance in the freq enc plane

i X i X i X

X

z f w z f z fw w
area A B area A

f
w w

λ λ λπ
π

π π

−⎡ ⎤ ⎛ ⎞ ⎛ ⎞− −⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎡ ⎤+ − ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦= =H

( )

For general radial distance  in the frequency plane ρ

ρH

2
1

0 0
0 0 0

2 cos 1- 2
2 2 2

    ,where 
i

w
z

ρ ρ ρ ρ ρ ρ
π ρ ρ ρ λ

−
⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎢ ⎥− ≤ =⎪ ⎜ ⎟ ⎜ ⎟⎢ ⎥= ⎨ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎪
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0                                            otherwise
In this case again OTF extends twice the cutoff frequency of the coheren

⎣ ⎦⎪
⎪⎩

t 
system. Compare Fig. 6.9 and 6.3 fX/2f0

fY/2f0



6.4  Aberrations and their effects on 
frequency responsefrequency response
• For diffraction-limited systems we assumed that a point 

source object yields at the exit pupil a perfect spherical 
wavefront converging towards the ideal geometrical 
image point.

• For systems with aberrations the exit pupil wavefront• For systems with aberrations the exit pupil wavefront 
departs from a perfect sphere.

• We do not treat the aberration subject completely. 
• We will concentrate on general effects of aberration on 

the frequency response of a system. 
W ill h th ff t ith i l l• We will show these effects with a simple example.  

29



6.4.1  The generalized pupil function I
For a diffraction limited system amplitude point spread function isFor a diffraction limited system, amplitude point-spread function is  
the Fraunhofer diffraction pattern of the exit pupil centered on the 
ideal image point.

To include effects of the aberrations in this picture we assume:
1) the pupil is still illuminated by a perfect spherical wave

( )

1) the pupil is still illuminated by a perfect spherical wave
2) there is a phase mask in the aperture deforming the wavefront that 
leaves the pupil.

( )( ),3)  represents effect of tkW x y ( )
( )

,

2 / ,

he phase error at point  where 

 and  is an effective path length error or 
the aberration function .

x y

k W x yπ λ=

( ) ( ), ,

the aberration function .
4) The complex amplitude transmittanc of the imaginary phase shift 

plane is: jx y P x y e=P ( ),    kW x y

30

( ),the complex function  is the generalized pupil function.x yP



6.4.1  The generalized pupil function II
( ) ( ) ( ),, ,The generalized pupil function defined as:     jkW x yx y P x y e=P

Now with the above assumptions 
a) The amplitude transmittance function of an aberrated coherent  system is 
the Fraunhofer diffraction pat ( ), .tern of the generalized pupil function x yPp ( ),g p p

b) The intensity impulse response of an aberrated incoherent system is the 
squared magnitude of the amplitude impulse response.

c) Aberration function is def

y

ined with respect to a Gaussian reference spherec) Aberration function is defined with respect to a Gaussian reference sphere. 
d) Gaussian reference sphere is the ideal spherical surface centered at the 
ideal image point and passing through the point where the 

ti l i i th it iloptical axis pierces the exit pupil.
e) The actual wavefront is also 
defined to intercept the optical Ideal 

image
Actual 
wavefront

Positive W(x,y)

axis in the exit pupil.
f) The error caused by aberration 
function can be negative or positive.

image 
point

zi

wavefrontW(x,y)

ExitN ti
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Gaussian 
reference 
sphere

Exit 
pupil

Negative 
W(x,y)



6.4.2  Effects of aberrations on the amplitude 
transfer function

( )2

For a diffraction-limited coherent system: 

1) impulse response is Fourier transform of the pupil function.
j ux VyA
π

λ
− +∞

∫ ∫( ) ( )
( )

-
, ,

2) The amplitude transfer function is the Fourier transform

i
j y

z

i

Ah u V P x y e dxdy
z

λ

λ
∞

∞
= ∫ ∫

( ) ( ) ( )2

 of the 
j f f V∞ +∫ ∫( ) ( ) ( )

( ) ( )

2, ,

, ,

amplitude impulse response 

3) Therefore the amplitude transfer function was found to be proportional to 

the scaled pupil function 

X Yj f u f V
X Y

X Y i X i Y

H f f h u V e dudV

H f f P z f z f

π

λ λ

∞ − +

−∞
=

=

∫ ∫

( ) ( ), ,t e sca ed pup u ct o

For diffrac
X Y i X i Yf f f fλ λ

( ) ( ) ( ),, ,

tion limited coherent systems with aberration:

a) The generalized pupil function is:     jkW x yx y P x y e=P

( ) ( ) ( ) ( ),, ,

b) The amplitude transfer function is written as:

c) The b

i X i YjkW z f z f
X Y i X i YH f f z f z f P x, y e λ λλ λ= =P

( )and limitation of the that was imposed by the finite exit pupilH f f

32

c) The b ( ),and-limitation of the  that was imposed by the finite exit pupil 
has not changed in presence of the aberrations. 

d) Aberrations only introduce phase distortions within the passband.

X YH f f



6.4.3  Effects of aberrations on the OTF 
(incoherent systems) I

( )
, ,

2 2 2 2

OTF of an aberration-free incoherent diffraction-limited system:

i X i Y i X i Yz f z f z f z fP x y P x y dxdy
f f

λ λ λ λ∞

−∞

⎛ ⎞ ⎛ ⎞+ + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

∫ ∫
H ( )

( )
( )

,
,

,We define the function  as the area of overlap of 

X Y

X Y

f f
P x y dxdy

f f

∞

−∞

=
∫ ∫

H

A

P x +

( )

, ,
2 2 2 2

 and i X i Y i X i Yz f z f z f z fy P x y

dxdy

λ λ λ λ⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫
( ) ( )

( )

,

0,0

,

Wavefron

then  X Yf f
X Y

y
f f

dxdy
=
∫ ∫
∫ ∫
A

A

H

t errors caused 
by aberrations

( )

, ,
2 2 2 2

,
OTF

In presence of aberrations: 

z f z fz f z fi X i Xi Y i Yjk W x y W x y

X Y

e
f f

λ λλ λ⎡ ⎤⎛ ⎞ ⎛ ⎞
+ + − − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

=H ( ),

by aberrations

X Yf f
dxdy

d d
∫ ∫

∫ ∫
A
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( )
( )

( )
0,0

,Aberrations will never increase the  or the modulus of the OTF.X Y

dxdy

MTF f f=

∫ ∫A
H



6.4.3  Effects of aberrations on the OTF 
(incoherent systems) II(incoherent systems) II

( ) ( ), ,
2 2

Important conclusions in presence of aberrations: 

1) X Y X Yf f f f≤H H( ) ( ), ,
With aberrations Without aberrations

1)  

implies that aberrations can never increase contrast of any spatial 
frequency component of the im

X Y X Yf f f f≤H H

age.
2) The absolute cutoff frequency of the system remains thae same 
however, severe aberrations can reduce high frequency portions of 
OTF to an extent that the effective cutoff is much lower than theOTF to an extent that the effective cutoff is much lower than the
diffraction-limited cutoff.
3) For certian frequency bands OTF may have negative or even 
complex value. when OTF is negative, the image components at that 

frequency can undergo a contrast reversal; i.e. 
i t it k b i t tit ll d i

34

intensity peaks become intentity nulls and vice versa.  



6.4.4  Examples of a simple aberration: a 
focusing errorfocusing error
Most aberrations are mathematically very challenging subjecst. 
The simplest example is a focusing error for an square aperture system:

The center of curvature of a spherical wavefront converging towards image 

,

of a point-source object is either to the left or right of the image plane.
For simplicity we assume this point is still on the optical axis.

Ideal phase distribution across the exit pupil: i xφ ( ) ( )2 2y x yπ
λ

= − +i ( ) ( )

( ) ( )2 2,Actual phase distribution across the exit pupil:  

where

i

a
a

i

z

x y x y
z

z z

λ
πφ
λ

= − +

≠

( ) ( ) ( )

( ) ( ) ( ) ( )2 2 2 2

, , ,

1 1 1, ,
2

where 
The path length error or aberration function: 

a i

a i

a i a i

z z
kW x y x y x y

kW x y x y x y W x y
z z z z

φ φ

π π
λ λ

≠

= −

⎛ ⎞
= − + + + → = − −⎜ ⎟

⎝ ⎠
( )2 2x y+

a i a i⎝ ⎠

2

1 1

Quadratic dependence
on the space variables 
on the exit pupil

For a square aperture of width  the maximum path-length difference

h d f h l h i i

w

21⎛ ⎞
⎜ ⎟
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1 1
2

at the edge of the aperture along the  or  axis is: mx y W
z

= −

( )

2

2 2

2

1

,

a i

m

w
z

x yW x y W
w

⎛ ⎞
−⎜ ⎟

⎝ ⎠
+

=



6.4.4  Examples of a simple aberration: a 
focusing errorfocusing error

( )
2 2

2,Now substitute the path-length difference  in the OTF:

z f z fz f z fi X i Xi Y i Yjk W x y W x y

m
x yW x y W

w
λ λλ λ⎡ ⎤⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟⎢ ⎥

+
=

( ) ( )

( )

, ,
2 2 2 2

,

0,0

,

f fi Y i Yjk W x y W x y

X Yf f
X Y

e dxdy
f f

dxdy

+ + − − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

=
∫ ∫

∫ ∫
A

A

H
( )

( )

2

2 2

,

,

z fW z fi Xm i Yjk x y
w

X Y

e
f f

λ λ⎛ ⎞
+ + +⎜ ⎟⎜ ⎟

⎝ ⎠

=H ( )

22 2

2 2 2

,

 

see page 144 eq 6.31

z f z fi X i Yx y

X Yf f
dxdy

λ λ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥− − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

∫ ∫
∫ ∫

A( ),X Yf fH
( )

( )

0,0

8 8, sin 1 sin 1

see page 144 eq 6.31

X Ym mX Y X Y
X Y

dxdy

f fW Wf f f ff f c c
⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= Λ Λ − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥

∫ ∫A

H
⎤

⎢ ⎥
⎢ ⎥

( )
0 0 0 0 0 0

,
2 2 2 2 2 2X Yf f

f f f f f fλ λ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

( )
/

0
We plot this OTF for various values of 

gives the diffration-limited no aberration OTF
mW

W
λ

⎢ ⎥
⎢ ⎥⎣ ⎦

=

36

( )0
/ 2

 gives the diffration limited no aberration  OTF.
For  sign of the OTF is reversed meaning a contrast reversal.

m

m

W
W λ>



OTF with focusing 
error in a system witherror in a system with 
square aperture

Wm<λ/2

Cutoff
frequency

Wm λ/2

frequency

37Wm>λ/2



Local contrast or MTF changes 

Focused and misfocused images of a 
spoke target

as a result of change in 
spatial frequency

spo e ta get
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Spatial frequency 
increases moving 
to center

The position of the fringes is 
determined by the phase associated 
with OTF at each frequency 



6.4.4  Examples of a simple aberration: a 
focusing errorfocusing error
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Consider the form of OTFwhen the focusing error is very sever m
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This is precisely the OTF predicted by the geometrical optics saying that the point-spread 

m YW f
fλ

⎡ ⎤⎛ ⎞
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function of the system is going to be the geometrical projection of the exit pupil into the 
image plane.  
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Geometrical optics prediction of the point-
spread function of a system with square sp ead u c o o a sys e squa e
aperture and sever focusing error 

zo
zi

Fourier transform of such a PSF function gives the OTF of the system 
in presence of severe aberrations, Fourier transform of the geometrical 
PSF is a good approximation for the OTF of the system and diffraction
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PSF is a good approximation for the OTF of the system and diffraction 
plays a negligible role is shape of the image 



6.4.5  Apodization and its effects on 
Frequency responseFrequency response
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