Contents

e Image processing template
¢ Reading and showing the image
e Discrete Fourier transform of the image

¢ Defining the filter in frequency domain. (Assignment)
e Shifting the filter

e Applying the filter
e Inverse Fourier transform

%PHYS 258 SJSU S2010 Nayer Eradat

Image processing template

Reading and showing the image

clear

im_read = imread (“"lenabw.jpg”); % read input file

fig = figure;

%get dimensions of the image matrix third dimension is the color
[x y z]=size(im read);

%Select only one color or first layer for black and white images
%Make a 2D array out of the image file

iml = im read(:,:,1);
%Size of the image array
siz = [x,y];

%Divide the screen to 6 parts and show the image on the first part
subplot (2,3,1);

imshow (iml) ;

title("Original image”) ;

Discrete Fourier transform of the image

take the discrete Fourier transform of the im1 file and store the spatial frequency values in im

iml £ = (fftn(double (iml),siz));

subplot (2,3,2);
mesh (log(iml f)); %3D plot in log scale that enhances th features

title("Fourier transform of the image”);

%save the data
%print ('-djpeg', 'lenabw-f.jpg', '-r0'):;

Defining the filter in frequency domain. (Assignment)

%You may have a high-pass, low-pass, or bandpass filter. Have an est
%of the frequency content of the image and use your knowledge of th
%Fourier optics to make filters for sharpening, smoothing, edge det
%increasing / decreasing the contrast, and compressing a picture.

%Here is an example Filter for smoothing

ax = 10; %coefficient to define size of the filter in X

ay = 10; %coefficient to define size of the filter in y

%This defines a rectangular finction in the middle of the matrix wi
% 1/15 dimention of the frequency matrix

for i = 1:1:siz(1,1);

for j= 1:1:siz(1,2)

if abs(i-siz(1,1)/2) < siz(1l,1)/ax && abs(j-siz(1,2)/2) < siz(
filterl(i,3) = 1;

else
filterl(i,j) = 0;

end

end

end

subplot (2,3,3);
mesh (filterl); %3D plot of the filter
title("Filter function®);

Shifting the filter

%We shift 1/4 of the rectangle to each corner (see the fftshift com
%When we took the fftn of the image the low-frequency content was
%accumulated on the corners so to generate a low-pass filter we are
%allowing the corners to pass.

filterl shift =fftshift (filterl);

subplot (2,3,4);

mesh (filterl shift); %3D plot of the shifted filter

title("Shifted filter function®);

Fourier transfarm of the image Filter function

Criginal image

0,

104

1000 1000

500 1000

1000

Shifted filter function

o5l

1000

500 1000

Applying the filter

%Element-by-element multiplication of the filter and the frequency
iml filterl f = (iml f.*filterl shift);

$iml filter £ = (iml f.*filter);

subplot (2,3,5);

mesh (log (iml filterl f)); %Log scale 3D plot of the Filter * freq ¢
title("Product of the shifted filter with the frequency spectrum®)

Warning: Log of zero.

Fourier transfarm of the image Filter function

Criginal image

0,

1000

o5l

1000
&00

Inverse Fourier transform

%Now we take the inverse fourier transform to recover the filtered
iml filterl ff = ifftn(double(iml filterl f),siz);

subplot (2,3, 6);

imshow (uint8 (iml_ filterl ff)); %Showing the image. This function
%does accepr unsigned integers

title("smoothened image”) ;

Warning: Displaying real part of complex input.

Fourier transfarm of the image Filter function

Criginal image

0,

104

1000 1000 1000 1000

500 i 500 .
0o 00

shifted filtErdductiod the shifted filter with the frequency spectrum

smoothened image
200 ¢

1000

o5l 10

1000 S 1000 e
500 1000 e =00
00

Published

