

Example: Digital Camera Lens Small number of elements (1-3) made from common glasses or plastics Image sensor (baseline is Agilent FDCS-2020) a. Type CMOS b. Resolution 640 x 480 effective pixels c. Pixel size 7.4 x 7.4 microns 3.55 x 4.74 mm (full diagonal 6 mm) d. Sensitive area **Objective Lens** e. Focus Fixed, depth of field 750 mm (2.5 ft.) to infinity Fixed, 6.0 mm f. Focal length <4% g. Geometric Distortion h. f/number Fixed aperture, f/3.5 i. Sharpness MTF through focus range (central is inner 3 mm of CCD) Low freq., 17 lp/mm >90% (central) >85% (outer) High freq., 51 lp/mm >30% (central) >25% (outer) j. Vignetting Corner relative illumination > 60% k. Transmission Lens alone, > 80% 400-700 nm Introduction to CODE V Training, "Digital Camera Design Study," Slide 2-5

Introduction to CODE V

OPTICAL RESEARCH ASSOCIATE:

Field Definition
 "Field of View" (FOV) describes the size of the object or image that a lens can handle If the object is at infinity, angular measure is used For finite object distances, object or image height can be used, with a slight preference for object-side definitions CODE V performs calculations at discrete field points defined with the lens In many cases, 3 field points are used, though some systems are designed for "axis only" with a single field Designers often use additional field points for wider angle systems, and we will add an additional field point to this lens

	Titles and Pictures	
CH ASSOCIATES	 Choose the Lens > System Data menu Click on System Settings item Enter new title, Dig Camera Intro Seminar Click the Quick 2D Labeled Plot icon to make a lens picture Mathematical Content on the set of the set	
OPTICAL RESEAR	System Data Puedencytise Boystem Stavis Boystem Stavis Boystem Calculations Boy Account of the Puedencytise Account of the Pue	NS)
	Introduction to CODE V Training, "Digital Camera Design Study," Slide 2-12	Č

The LDM Spreadsheet

The LDM spreadsheet contains the basic surface data Ē RESEARCH ASSOCIAT - Surface numbers, names (user labels), types, Y Radius of Curvature or Y Curvature (depends on Edit > Radius Mode setting), thickness (distance to next surface), glass name, refract mode (usually Refract or Reflect), aperture size - Right click on any cell and choose Surface Properties to get more surface information 🔜 Lens Data Manager _ 0 Surface # Surface Refract Mode Surface Y Y Radius Thickness Glass Semi-Aperture **OPTICAL** Type Object Sphere Refract 786500. Refract Sphere 0.3561 0.1100 0.2062 0 0.7012 0.0700 0.16830 Sphere Refract 0.13290 -0.6597 0.0200 717360. Refract Sphere 0.10880 0.4168 0.0350 Stop Sphere Refract 0.0650 834810. Refract Sphere 0.9208 0.14080 0.7743 ^{\$} 0.15210 -0.5408 Refract Sphere 0.47190 Image Sphere Infinity -0.0040 Refract End Of Data Introduction to CODE V Training, "Digital Camera Design Study," Slide 2-13

	Surface Properties
OPTICAL RESEARCH ASSOCIATES	Strice Properties Writes Type Writes Base Writes Base

	Analyze MTF
H ASSOCIATES	 MTF is related to resolution or "sharpness" Choose Analysis > Diffraction > MTF Frequency 68 (cycles/mm) for maximum, 17 for increment On Graphics tab, enter 68 for maximum plot frequency Click OK — MTF is above 0.25 for all fields.
OPTICAL RESEARC	MIF Image Motion Image Motion Image Motion <td< th=""></td<>
	د به

Other Issues

- This lens is very small with focal length and detector size around 6 mm (about 0.25 inch)
 - The center element has a thickness of 0.126 mm, too thin for practical fabrication
 - Need to consider practical aspects of small elements, including thickness constraints in optimization

OPTICAL RESEARCH ASSOCIATE

- Would also need to consider glass properties
 - Patent lens has "fictitious" (variable) glass with high index of refraction

Codet

- Higher index glasses are more expensive

Introduction to CODE V Training, "Digital Camera Design Study," Slide 2-21

- May want to constrain glass to lower index

Copyright © 2009 Optical Research Associates

Workshop 2-1: Telephoto Lens (2)

• Draw the lens.

OPTICAL RESEARCH ASSOCIATES

- Use Edit > Scale to scale the lens data by a factor of 1.35. Make sure you scale all surfaces (1 through Image).
- Verify the effective focal length using Display > List Lens Data > First Order Data.
- Compute the diffraction MTF with a maximum frequency of 60 and increment of 5.
- Save the lens for future use.

Introduction to CODE V Training, "Digital Camera Design Study," Slide 2-23

CODE.

Optimization Plan

- Use LDM to define variables
 - All curvatures, all thicknesses, all glasses
- Define general constraints on thickness and glass
- Define a specific constraint on EFL, others as needed
 - Distortion may require a constraint
- Draw the lens at each cycle

OPTICAL RESEARCH ASSOCIATES

• Optimize with default weights

Introduction to CODE V Training, "Digital Camera Design Study," Slide 2-25

- Analyze MTF and distortion
- Re-optimize with field weights adjusted to balance performance across fields

Introduction to CODE V

Variables Ready for AUTO It's good to review your variables before optimization Ē RESEARCH ASSOCIAT Choose the **Review > Variables and Coupling** menu Variables and Couplings - 🗆 × Surface # Parameter Glass Sub-Parameter Coupling Code A "Coupling Code" Curvature 0 of 0 means "vary," Thickness n Glass 1 Index and Dispersion while 100 means Curvature 0 "freeze," though 0 2 Thickness 3 Curvature 0 frozen parameters 3 0 Thickness PTICAL are not shown in 3 Glass 1 0 8 Index and Dispersion top Curvature 0 the review n top Thickness spreadsheet. 5 Curvature 0 Thickness 5 0 Glass l Index and Dispersion 0 5 0 14 6 Curvature 0 Image Thickness 0 End Of Data ∎ Þ Introduction to CODE V Training, "Digital Camera Design Study," Slide 2-30

	General Constraints Tab	
ASSOCIATES	 General constraints prevent non-physical solutions (e.g., negative edges, glass with n = 99) They apply to all surfaces and zoom positions, but can be overridden by specific constraints 	
OPTICAL RESEARCH	Enter 0.9 for minimum edge for minimum edge thickness (keep other defaults). Delete glass SF4 and change Map 3 glass to SF2.	

Control of Control of Control		EFL Constraint Entry
Frite Inset Elser Defined Constraint Delete	OPTICAL RESEARCH ASSOCIATES	- Cnctare equality constraint, EFL = 6 mm Virtuatio Desp Through focus Optimization Control Through

Final Field Weights

Analysis Optimization Tools Window Help	
Diagnostics Geometrical Diffraction System Tolerancing Illumination MTF Point Spread Function Detector Energy Encircled Energy Wavefront Analysis ID Partial Coherence Beam Propagation Fiber Coupling Efficiency Bragg Diffraction Efficiency Bragg Diffraction Efficiency Database	CDject Definition PSF Controls Color Controls Object Filename C_\CODEV970\image\Landscap Type of Field Coordinate Field Angle in Object Field Semi-Diagonal Default X-Offset 0.0000 Rotelion 0.0000
2D Image Simulation Object Definition PSF Controls Color Controls Output Con Computational method G-wavelength Color PGB Controls Red Wavelength	?X rols OK Cencel

Introduction to CODE V

Workshop 2-2 : Optimize Telephoto Lens (2)

- OPTICAL RESEARCH ASSOCIATES A telephoto lens should be shorter than its focal length (S1 to image < EFL). Reoptimize with a constraint to keep the Overall Length (under "Manufacturing/Packaging") from surface 1 to the image < 120. (** Note: The First Order Data lists the overall length from S1 to S(I-1) as "OAL.")
 - Re-compute the MTF. Did it change much?
 - An SLR lens must have an image distance (back focal length, BFL) > 40 mm. Reoptimize with this constraint, found under "Optical Definitions." Did it change the MTF?
 - The rear element semi-diameter is somewhat large for a typical SLR lens mount. (A typical SLR mount requires a semi-diameter < 12.5 mm.) See how small you can make it while keeping the on-axis MTF > 0.5 at 30 cyc/mm. Use the Max Semi-diameter constraint found under "Manufacturing/Packaging" at surface 10.

CODE V Training "Digital Camera Decign Study

- Compensators simulate adjustments made during assembly or alignment
 - Compensators minimize loss in performance
 - They are not allowed to improve the performance by themselves but only to minimize performance loss
 - Compensation is done simultaneously over field and zoom (by default)
 - Compensation can be done separately for each field and zoom
- Any tolerance parameter can be a compensator

Introduction to CODE V Training, "Digital Camera Design Study," Slide 2-55

- Most compensators relate to moving an element or group of elements (shift along Z, tilt, decenter, etc.)
- Default compensator is shift of the image surface (DLZ SI)

Introduction to CODE V

OPTICAL RESEARCH ASSOCIATES

	Example Output
CAL RESEARCH ASSOCIATES	Spec: Field Spec: Spec: <th< th=""></th<>
0 P T 1 (Performance Summary Table & Graph

Review > Tolerances (LDM)

БIJ

ToleFances Type Start Surface End Surface Label Value Freeze X 26 CYD - Irregularity Oriented 45 Degr 3 3 0.5000	Tolerances Type Start Surface End Surface Label Value Freeze X 26 CYD - Irregularity Oriented 45 Degr 3 3 0.5000 27 CYD - Irregularity Oriented 45 Degr 3 3 0.5000 28 CYD - Irregularity Oriented 45 Degr 5 5 0.5000 29 CYD - Irregularity Oriented 45 Degr 6 6 1.5000 29 CYD - Irregularity Oriented 0 Degre 1 0.5000 30 CYN - Irregularity Oriented 0 Degre 2 2 0.5000
Type Start Surface End Surface Label Value Freeze X 26 CYD - Irregularity oriented 45 Degr 3 3 0.5000 - 27 CYD - Irregularity oriented 45 Degr 5co 0.5000 - - 28 CYD - Irregularity oriented 45 Degr 5co 0.5000 - - 29 CYD - Irregularity oriented 45 Degr 6 6 1.5000 - 29 CYD - Irregularity oriented 45 Degr 6 6 1.5000 - 30 CYN - Irregularity oriented 0 Degre 1 1 0.5000 - 31 CYN - Irregularity oriented 0 Degre 2 2 0.5000 - 32 CYN - Irregularity oriented 0 Degre 3 3 0.5000 - 32 CYN - Irregularity oriented 0 Degre 3 3 0.5000 - 32 CYN - Irregularity oriented 0 Degre 3 3 - - 32 CYN - Irregularity oriented 0 Degre 3 3 - - 32 CYN - Irregularity oriented 0 Degre 3 3 - - 32 CYN - Irregularity oriented 0 Degre 3 3 - - 33	Type Start Surface End Surface Label Value Freeze X 26 CYD - Irregularity Oriented 45 Degr 3 3 0.5000
26 CYD - Irregularity Oriented 45 Degr 3 3 0.5000 - 27 CYD - Irregularity Oriented 45 Degr Stop Stop 0.5000 - - 28 CYD - Irregularity Oriented 45 Degr 5 0.5000 - - - 29 CYD - Irregularity Oriented 45 Degr 6 6 1.5000 - - 30 CYN - Irregularity Oriented 0 Degre 1 1 0.5000 - - 31 CYN - Irregularity Oriented 0 Degre 2 2 0.5000 - - 32 CYN - Irregularity Oriented 0 Degre 3 3 0.5000 - - 32 CYN - Irregularity Oriented 0 Degre 3 3 0.5000 - - 32 CYN - Irregularity Oriented 0 Degre 3 3 0.5000 - - - 32 CYN - Irregularity Oriented 0 Degre 3 3 0.5000 - - - 32 CYN - Irregularity Oriented 0 Degre 3 3 0.5000 - - - 32 <td< th=""><td>26 CYD - Irregularity Oriented 45 Degr 3 3 0.5000 </td></td<>	26 CYD - Irregularity Oriented 45 Degr 3 3 0.5000
27 CYD - Irregularity oriented 45 Degr Stop 0.5000 □ 28 CYD - Irregularity oriented 45 Degr 5 5 0.5000 □ 29 CYD - Irregularity oriented 45 Degr 6 6 1.5000 □ 30 CYN - Irregularity oriented 0 Degre 1 1 0.5000 □ 31 CYN - Irregularity oriented 0 Degre 2 2 0.5000 □ 32 CYN - Irregularity oriented 0 Degre 3 3 0.5000 □ 32 CYN - Irregularity oriented 0 Degre 3 3 0.5000 □ 32 CYN - Irregularity oriented 0 Degre 3 3 0.5000 □ 32 CYN - Irregularity oriented 0 Degre 3 3 0.5000 □ Compensators	27 CYD - Irregularity oriented 45 Degr 5 5 0.5000 □ 28 CYD - Irregularity oriented 45 Degr 5 5 0.5000 □ 29 CYD - Irregularity oriented 45 Degr 6 6 1.5000 □ 30 CYN - Irregularity oriented 0 Degre 1 0.5000 □ 31 CYN - Irregularity oriented 0 Degre 2 2 0.5000 □
28 CYD - Irregularity oriented 45 Degr 5 5 0.5000	28 CYD - Irregularity oriented 45 Degr 5 5 0.5000 □ 29 CYD - Irregularity oriented 45 Degr 6 6 1.5000 □ 30 CYN - Irregularity oriented 0 Degre 1 0.5000 □ 31 CYN - Irregularity oriented 0 Degre 2 2 0.5000 □
29 CYD - Irregularity oriented 45 Degr 6 6 1.5000 30 CYN - Irregularity oriented 0 Degre 1 1 0.5000 31 CYN - Irregularity oriented 0 Degre 2 2 0.5000 32 CYN - Irregularity oriented 0 Degre 3 3 0.5000 32 CYN - Irregularity oriented 0 Degre 3 3 0.5000 32 CYN - Irregularity oriented 0 Degre 3 3 0.5000 33 CYN - Irregularity oriented 0 Degre 3 3 0.5000 34 CYN - Irregularity oriented 0 Degre 3 3 0.5000	29 CYD - Irregularity Oriented 45 Degr 6 6 1.5000 □ 30 CYN - Irregularity Oriented 0 Degre 1 0.5000 □ 31 CYN - Irregularity Oriented 0 Degre 2 2 0.5000 □
30 CYN - Irregularity Oriented 0 Degre 1 1 0.5000	30 CYN - Irregularity Oriented 0 Degre 1 1 0.5000 □ 31 CYN - Irregularity Oriented 0 Degre 2 2 0.5000 □
31 CYN - Irregularity oriented 0 Degre 2 2 0.5000 32 CYN - Irregularity oriented 0 Degre 3 3 0.5000 ✓ Compensators Type Start Surface Compensators Compensators	31 CYN - Irregularity Oriented D Degre 2 2 0.5000
32 CYN - Irregularity oriented 0 Degre 3 3 0.5000 Image: start Type Start Surface End Surface Label Value Compensators	
Image: comparison of the second se	32 CYN - Irregularity Oriented 0 Degre 3 3 0.5000
Type Start Start Surface Label Value Compensat or Use Control	
Type Start End Surface Surface Label Value Or Use X O Control	Compensators
	Type Start End Surface Surface Surface Compensat Or Use X of Control
1 DLZ - Surface Z-Displacement (lens un Image Image 20.0000 May be us	1 DLZ - Surface Z-Displacement (lens un Image Image 20.0000 May be us
End Of Data	End Of Data

