
Chapter 4
Wave Equations

Lecture Notes for Modern Optics based on 
Pedrotti & Pedrotti & Pedrotti

Instructor: Nayer EradatInstructor: Nayer Eradat
Spring 2009

3/11/2009 1Wave Equations



Wave Equation

Chapter Goal:

developing the mathematical expressions for wave motion.

Most general caseMost general case

Harmonic waves 

Electromagnetic (EM) waves 

Light wavesLight waves

Energy delivered by such EM waves

Wave: 
•A self sustaining energy‐carrying disturbance of a medium through which it propagates.

•Longitudinal wave: the medium is displaced in the direction of motion of theLongitudinal wave: the medium is displaced in the direction of motion of the 
wave.
•Transverse wave: the medium is displaced in a direction perpendicular to that of 
the motion of the wave. 

Wh t th di t b d t th di Th t i h•When a wave propagates, the disturbance advances, not the medium. That is why 
waves can propagate faster than the medium carrying them (Leonardo da Vinci).
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Equation for mathematical form of a pulse
Goal: developing a mathematical expression for the most general form of a one-dimensional (1D) 

( ) ( )
traveling wave. Consider:

, A stationary coordinate system.      ' ', ' A moving coordinate system.

R

O x y O x y

V

← ←

← ( ) ( )elative speed of motion of ' ', '  to ,  in the  directionO x y O x y x+( ) ( )
( ) ( )' ' A one dimensionnal pulse of arbitrary time-independent shape fixed to ' ', '

 or '  is the transverse displacement from equilibriu
y f x O x y
y y
= ←

m (the disturbance).  As '  moves the pulse 
maintains its shape. Relationship between the coordinates of an arbitrary point on the pulse 

O

( ) ( ) ( ) ( )

p p y p p
'

,  and ', '  
' '

For a pulse moving i

x x Vt
P x y P x y

y y f x f x Vt
= −⎧⎪→ ⎨ = = = −⎪⎩

( )n direction 'x y f x Vt= +For a pulse moving i ( )
( )

Equation for mathematical 
form of a pulse

n  direction  

'   for  and + for 

x y f x Vt

y f x Vt x x

− = +

= − + −∓���	��


[ ]( )
( )2

 can be any function for example

sin  traveling periodic in  

 traveling in 

f

y A k x Vt x

y A x Vt x

= − +

= + −

X’
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One dimensional wave equation

The wave equation is a partial differential equation that any arbitrary wave form will satisfy it

( )
2 2

2 2 2

The wave equation is a partial differential equation that any arbitrary wave form will satisfy it.

1Verify that any wave of the form  satisfies  the 1D wave equation.

To show that

y yy f x Vt
x V t
∂ ∂

= =
∂ ∂

∓

if a given function represents a traveling wave it is sufficient to represent it in the To show that

( )
 if a given function represents a traveling wave, it is sufficient to represent it in the 

form of   or prove that it satisfies the wave equation.y f x Vt= ∓

X’

3/11/2009 Wave Equations 4



Harmonic waves

Harmonic waves are smooth patterns that repeat endlesly. They involve the sine and cosine functions: 

[ ]( ) [ ]( )sin  or cos

 and k are constants that specify a wave without altering its harmonic n

y A k x Vt y A k x Vt

A

= − = −

ature. The sin and cos functions 
form a complete set of functions so a linear combination of them is also a wave. Using this property we 
can construct complicated waveforms from linear superposition o

( )
f the simple sin and cos functions. 

sin cos / 2  so sin is equivalent to cosin, shifted by /2.
Amplitude A: the maximum value of the disturbance

x x π π= −

Wavelength : the repetitive spatial unit of the wave 

A

λ

( ) ( )
( )

sin sin 22  or 
sin sin 2

k x Vt A k x Vt
k k

x x

λ πλ π
λπ

⎫⎡ ⎤+ + = + ⎪⎣ ⎦ = =⎬
= + ⎪⎭( )

Propagation constant: 2 /  related to spatial period 

 is also called spatial frequency or number of waves in 2   

Period T: the repetitive tem

k

k

π λ λ

π

⎭

=

poral unit of the wavePeriod T: the repetitive tem

( ) ( )
poral unit of the wave 

sin sin 2  or / 1

Frequency : number of oscillations per unit time 1/

Angular frequency: 2 related to temporal period

A k x V t T A k x Vt kVT VT

T V

π λ

ν ν νλ

ω πν ν

⎡ ⎤+ + = + → = =⎣ ⎦

= → =
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Angular frequency:  2  related to temporal period  
Wave number: 1/  nu

ω πν ν
κ λ

=
= mber of waves per unit length 



Phase, phase  velocity and harmonic waves, initial phase
( )sin

cos
y A k x Vt⎡ ⎤= ⎣ ⎦∓

sin sin 0 for 0 and 0
2 2 Initial phase 0

cos cos  for 0 and 0

sin sin2 2

y x tx Vt x ty A A
y A x tT

y A x t A kx t

π π
λ λ λ

π πν ω

= = =⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= = =⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ = = =⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎩ ⎭
⎛ ⎞⎡ ⎤⎛ ⎞= = ⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟⎝ ⎠

∓ ∓

∓ ∓
cos cos

Phase: 
Phase

y
λ

⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟⎝ ⎠⎣ ⎦ ⎝ ⎠
∓ ∓�	


( )

argument of the sin or cosine function in a harmonic wave that is a function of space and time. 

= 2 x tk x Vt kx t
T

φ π ω
λ

⎛ ⎞= =⎜ ⎟
⎝ ⎠

∓ ∓ ∓

( )For any set of x and t that  stays constant the displacement sin is also 
T

y A
λ

φ φ
⎝ ⎠

= constant. 
Motion of a fixed point on a wavefront is described by motion of a constant phase point. 
For a point with constant we have φ =p

0     General formula

Phase velocity of a w

phase
xd kdx Vdt V
t φ

φ

φ ∂
= = → =

∂
∓

ave is speed of the motion of a constant-phase point on a disturbance.y p p p

Value of the pase velocity: for a harmonic wave at any given time 

For constant phase: 0  phase pha

kx t

x xk V V
t t tφ φ

φ ω ε

φ ω

= +

∂ ∂ ∂
= = → = →

∂ ∂ ∂

∓

∓  only for harmonic wavesse k
ω

= ±
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φ φ

( ) 1 0
0 0 0 0 0Initial phase sin ; at 0 and 0 sin sin yy A k x Vt t x y A y

A
φ φ φ φ − ⎛ ⎞⎡ ⎤= → = + = = → = = → = ⎜ ⎟⎣ ⎦ ⎝ ⎠

∓



Exercise
3 6 8( , ) 10 sin (3 10 9 10 0.5)x t x tψ π= × + × +For the wavefunction  

in SI units find the following quantities:g q
a) speed, b) wavelength, c) frequency, d) period, e) amplitude, 
f) phase, g) initial phase, h) phase at 10 ,t s=    i) phase velocity, 
j) compare the speed and the phase velocity.j) compare the speed and the phase velocity. 
k) what is the direction of the motion of the wave. Does phse velocity 
indicate the direction of motion properly?
k) what is ma 0 0 / 4 / 2 3 / 4x t τ τ τ τ= =gnitude of the wave at when ?k) what is ma 0 0, / 4, / 2,3 / 4,

0 0, 0.5 ,
, 2 .

x t
t

τ τ τ τ
π

π π

= =
=

gnitude of the wave at  when ?
l) plot the profile of the wave at  with initial pahse equal to   
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Complex numbers
More often wavefunctions are expressed in complex exponentials since complex 

( )1z z jy z x iy i or j x y= + = + = −

exponentials can simplify the trigonometric expressions.

 or ;    and both  real part  and  imaginary pa( )rt  

are real numbers.
2 2| | ;

tan

z x y
yφ

= +

=

are real numbers.

Absolute value or modulus:   

Argument: 

*

i

i

x
z Ae

z Ae z

φ

φ−

=

=

We can also write  and 
 the complex conjugate of 

cos sin (cos sin )ie i z A i
x A

φ φ φ φ φ= + → = +
=

Euler's formula:     
where  

2 2

cos sin

| |

y A

A z x y

φ φ=

= = +

     and       

 is the magnitude or amplitude

1

*

| |

tan

y

y
x

z x iy z x iy

φ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠
= = +

g p

 is the phase

Also is the complex conjugate of
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( )( )* 2| | | | | |i i

z x iy z x iy

zz z e z e zφ φ−

= − = +

= =

Also  is the complex conjugate of .



Euler formula andEuler formula and 
harmonics waves as a complex function

cos sinie iφ φ φ= +
Using this formula we can express a harmonic wave 
as a real or imaginary part of a complex function.

( )

( )

-

Re cos -

i kx ty Ae

y y A kx t

ω

ω

=

⎛ ⎞= =⎜ ⎟
⎝ ⎠

∼

∼
 or 

( )Im sin -y y A kx tω

⎝ ⎠
⎛ ⎞= =⎜ ⎟
⎝ ⎠

∼

Any equatrion that involves

Re Im

y

y y y y⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∼

∼ ∼

linear terms in  and its derivatives 

will hold for  and 
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Plane waves
Wavefront: a surface over which the phase of a wave is constant. 
Plane waves have planar wavefronts that are surfaces perpendicular to the direction p p p
of propagation . We write equation of a plane thatk 0 0 0 0is passing through ( ,  ,  ) 
and is perpendicular to  (direction of propagation). 
Consider an arbitrary point on the planar wavefront we must have:

p x y z

p
k

Consider an arbitrary point  on the planar wavefront, we must have: 
   

is equation 

p
constnt→ =0 0(r - r ) k = 0 k r = k ri i i

of such a plane perpendicular to k

z

k
( ) sin( ) is a function defined 

on a family of planes all perpendicular to . 
Phase and ( ) are constant on one plane 

Aψ

ψ

=r k r
k

r

i
p(x,y,z)

(wavefront) but they vary sinusoidally 
from plane to plane. 
The progressive wave equation is then:

y

r

r0

p0 (x0,y0,z0)

( . )

( ) ( )

The progressive wave equation is then:
( , ) sin( )  or 
( , ) = cos( ) sin( )i t

i k t i k t

t A t
t Ae A t iA tω

θ

ψ ω

ψ ω ω

=

= +k r

r k r
r k r k r∓

i ∓
i ∓ i ∓

x
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( cos ) ( )( , )  =  where s is the component of r along the di kr t i ks tt Ae Aeθ ω ωψ =r ∓ ∓ irection 
of propagation or k. Amplitude of a plane wave stays constant as it propagates. 



Harmonic waves in 3‐dimension

( ) ( )

A general harmonic wave in three-dimension in complex form:

, i tt Ae ωψ −= k rr i

( )
2 2 2 2

The 3-D wave equation that satisfies ,

1

tψ

ψ ψ ψ ψ∂ ∂ ∂ ∂
+ + =

r

2 2 2 2 2

2 2 2 2

2 2 2 2 2

1

x y z V t

ψψ

+ + =
∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂
+ + =⎜ ⎟2 2 2 2 2

2 2 2
2

2 2 2

x y z V t
ψ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂2 2 2

2

x y z∂ ∂ ∂

∇
2

2 2

1 3-D wave equation 
V t

ψψ ∂
=

∂
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Spherical waves
By solving the differential spherical wave equation we can arrive at harmonic

( , ) sin ( )Ar t k r Vt
r

ψ = ∓

By solving the differential spherical wave equation we can arrive at harmonic 
spherical wave function:

( ) ( )( , ) ik r Vt i kr t

r
A Ar t e e
r r

ωψ = =∓ ∓

that represents cluster of concentric shperes 
at 

( , )
,

r r t
A

ψ
any instance.

On each sphere  is constant so  is constant.
Here  the source strength is a constant.
A
r

 is the amplitude and it varies inversly with the distance from the source to 

conserve the e
2

2

W A⎛ ⎞∝ ⎜ ⎟
⎝ ⎠

nergy. The irradiance in   is the iverse square law of co se e e e 2

2 2

m r⎜ ⎟
⎝ ⎠

e gy e ad a ce s e e se squa e a o

propagation for the spherical waves. 
Same as plane waves, for spherical waves
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2 2,k
T

π πω
λ

= =  



Cylindrical Waves
( )i k tA ρ ω∓( )

 is the perpendicular distance from the line of symmetry of the cylindrical wave.
If the the line of sylmmetry is the z axis then 

i k te
p

ρ ωψ

ρ

= ∓

2 2

t e t e e o sy et y s t e a s t e

= x
These waves are not exact solutions of the wave func

yρ +

tion.
So they do not exactly represent physical wavesSo they do not exactly represent physical waves. 
But they are useful to express waves coming out 
of a slit illuminated by a plane wave.  
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Hermite‐Gaussian waves
A good representation of the laser beams and an approximate solution to the wave equation. 
Good for the cases that the irradiance is strongly confined to the direction of propagationGood for the cases that the irradiance is strongly confined to the direction of propagation. 
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Electromagnetic waves
-  The harmonic wave equation can represent any type of disturbance with sinusoidal behavior.
-  Physical significance of the disturbance is different for different systems (pressure, displacement ...)
-  Maxwell showed that light is composed of electric and magnetic fields oscillating perpendicular 

to each other and propagating in the direction k, perpendicular to the plane of oscillations. 

For light waves the disturbance is the-  For light waves the disturbance is the 
magnitude of varying electric or magnetic fields 

that are described with the following harmonic 
wavefunctions:

( . )

( . )

sin( . ),

sin( .

i t

i t

e t

e

ω

ω

ω−

−

= = −

= =

k r
0 0

k r
0 0

E E E k r

B B B k

   
)tω−r

Electric fields are generated by electric 
charges and time-verying magnetic fields.
Magnetic fields are generated by electric 

currents (charge in motion) and time-
varying electric fields.varying electric fields. 
This int

q

E Bedependence of the  and  is 
a key point in description of the light. 
Lorentz force: an electric charge , moving 
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v

E B

with velocity of  in an area that contains 

both  and  fileds, feels forces due to ( )= ⋅ + ×F E v Bexistance of both fields. q



Before MaxwellBefore Maxwell

Faraday's induction law: a time-varying magnetic field will have an 

-

y y g g

electric field associated with it.    
C

dl d
t

∂
⋅ = ⋅

∂∫ ∫∫
A

BE s
G

v

0

1 ,
A

Gauss's law-electric:  when there are no 

sources or si
V

d dVρ
ε

⋅ =∫∫ ∫∫∫E sw
nks of the electric field within the region encompassed 

0,M A

g p
by a closed surface, the net flux through the surface equals to zero.

Gauss's law-magnetic:  there is no magnetic monopoledΦ = ⋅ =∫∫ B sw
Ampere's ,circuital law:   a time-varying 

field or charges in motion (electric current) will generate a field

C
dl d

t
μ ε ∂⎛ ⎞⋅ = + ⋅⎜ ⎟∂⎝ ⎠∫ ∫∫

A

EB J s

E B

G
v

16

-field or charges in motion (electric current) will generate a -fieldE B



Maxwell equations; integral formMaxwell equations; integral form

Behavior of electric and magnetic fields in a medium with
,

,
ε μ

ρ J

Behavior of electric and magnetic fields in a medium with  
electric permitivity  and magnetic permeability , in 
presence of free charges , and current density  is explained 
by four integral equa

-
C

dl d
t

∂
⋅ = ⋅ ←

∂∫ ∫∫
BE s

G
v

tions known as Maxwell equations.  

             Farady
C

C

t

dl d
t

ε
μ

∂

∂⎛ ⎞⋅ = + ⋅ ←⎜ ⎟∂⎝ ⎠

∫ ∫∫

∫ ∫∫

A

A

B EJ s
G

v    Amper

0d

d dVε ρ

⋅ = ←

⋅ = ←

∫∫
∫∫ ∫∫∫

B s

E s

w
w

A

A

                        Gauss magnetic

             Gauss electric
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V
∫∫ ∫∫∫A



Maxwell equations; differential formMaxwell equations; differential form

dl d∂ ∂
∇∫ ∫∫

B BE E
G

v -                
C

dl d
t t

dl dε μ ε

⋅ = ⋅ →∇× = −
∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞⋅ = + ⋅ →∇× = +⎜ ⎟ ⎜ ⎟

∫ ∫∫

∫ ∫∫

A

E s E

B E EJ s B J
G

v

v
0 0

A

     

                           

C
dl d

t t

d

ε μ ε
μ

+ →∇× +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⋅ = →∇⋅ =

∫ ∫∫

∫∫
A

J s B J

B s B

v

w

A
                

V

d dV ρε ρ
ε

⋅ = →∇⋅ =∫∫ ∫∫∫E s Ew

∫ ∫∫
G

We used the following theorems: Stoke's  

Gauss's

C
dl d

d dV

⋅ = ∇× ⋅

⋅ = ∇ ⋅

∫ ∫∫

∫∫ ∫∫∫
A

E E s

B s B

G
v

w
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A
                                                   Gauss s 

V

d dV∇∫∫ ∫∫∫B s Bw



Constitutive relations
μ= = =H B H B HMagnetic field;  Magnetic induction (effect of the  in the medium );  
ε= =

=
E D E D E
J

Electric field;  Electric displacement (effect of the  in the medium = ); 
Current density;  

Constituitive relati ( , ); ( , ); ( , )= = =D D E B H H E B J J E Bons are:          ( ) ( ) ( )
These relations may be nonliner or depend on the past (hysteresis). 
Linear response: the applied fields are small so they induce electric and magnetic 
polarizations proportional to the magnitude of the applied fieldpolar

1; ,E Bα αβ β α αβ αβε μ α β−= =∑ ∑D H

izations proportional to the magnitude of the applied field 
(ferroelectric and ferromagnetic material are exceptions are nonlinear material)

     are the coordinates x,y,z.
β β

αε
1

β

αβμ−

 is electric permitivity or dielectric tensor; 

 is inverse magnetic permitivity tensor

ε μFor material isotropic in space both  and  are diagonal matrices and all elements 

are equal. For isotropic ε μD E H B-1 material   =   and    =
At high enough fields every material is nonlinear (nonlinear optics)

19

(1) (2)

,
....D E E Eα αβ β αβγ β γ

β β γ

ε ε= + +∑ ∑
At high enough fields every material is nonlinear (nonlinear optics)

      



Electric field in mediumElectric field in medium
0ε χ=P P E

D D E P

1)  polarization vector:  electric dipole moment per unit volume.

2) di l t fi ld l t i fi ld ithi th t i l0

0

- (

ε

ε
ε ε

= +

= =
0

D D E P

D PE E D E E

2)  displacement field:  electric field within the material 

3)  internal electric field:  and we have )  

0)∇⋅ = ∇ ⋅ =

D E

E D

 and  lines begin and end on free charges or polarization cahrges. 
In absence of free charge field lines close on temselves 
( 0).∇ ∇E D

P E
(  
For homogeneous, linear, isotropic dielectrics  and  are i

0 0, (1 ) / 1e rε ε ε χ ε ε ε χ= = + Κ = = = +D E

n the 

same direction so  where , and  

( )/I V R=J
is the relative dielectric constant or function. 
4)  current density: acording to the Ohm's law  electric field intensity 

determ ,σ=J Eines the flow of the cahrge in a conductor true for conductors at

20

determ ,σJ Eines the flow of the cahrge in a conductor  true for conductors at 
constant temperature.



Constitutive relations: magnetic 
fields in a mediumfields in a medium

m= ΚM M H1)  magnetic polarization vector: . 
1 ,μ −= −0H H B M

B H

2)  magnetic field intensity:  

For homogeneous, linear (nonferromagnetic), isotropic 

medium  and  are parallel and proportional, 

1 (μ μ μ−= =H B 0

ed u a d a e pa a e a d p opo o a ,

 and 
0

1 ) (1 )

1 0

m m

m

μμ
μ

μ

+Κ = = +Κ

= Κ =

r

r

 and 

For most optical material  or  or no magnetization occures mμrp g
under magnetic field.
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Maxwell equations using the 
lconstitutive relations

          ∂ ∂
∇× = − →∇× = −

∂ ∂
B BE E
t t

ρ ρ

∂ ∂

∇ ⋅ = →∇⋅ =E D               ρ
ε

μ ε

∇ →∇

∂ ∂⎛ ⎞∇× = + →∇× = +⎜ ⎟

E D

E DB J H J

0 0                  
t t

μ ε∇× = + →∇× = +⎜ ⎟∂ ∂⎝ ⎠
∇ ⋅ = →∇⋅ =

B J H J

B B
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The wave equation for the E and M q
components of the EM waves 

0 0 0 0

0, 0)

, , (1) , 2)
t t

ρ

ε ε μ μ μ ε

= =
∂ ∂

= = ∇× = − ∇× =
∂ ∂

J
B EE B

Maxwell equations in nonconducting  medium (   vacuum 

                  (   

(3) 0, (4) 0
t t∂ ∂

∇ ⋅ = ∇ ⋅ =B E                                                

Take curl of (1) , ( ),∂
∇×∇× = − ∇×

∂
B E B and use (2) to eliminate  ( )

2 2
2

0 0 0 02 2

, ( ),

, ( )

t

t t
μ ε μ ε

∂
∂ ∂

∇×∇× = − ∇ ∇⋅ −∇ = −
∂ ∂

E EE E E

( )

 , using (4) we get 

2 2
2

0 0 2 2
0 0

1, | |
t t

μ ε
μ ε

∂ ∂
∇ = = =

∂ ∂
E EE V

V2
1differential wave equation:  with

23

2
2

0 0μ ε ∂
∇ =BWe can also show: 

2

2 2t t
∂

=
∂ ∂

B B
V2
1 ,    



The index of refractionThe index of refraction

Velocity of light based on Maxwell's theoretical treatment in vacuum is 

0 0

1 1 .c V

c

ε μ εμ

εμ

= = and in medium is 

0 0
e r r

cn K
V

εμ μ ε μ
ε μ

= = =

E

rAbsolute index of refraction defined as: = . 

The  field polarizes the medium rusulting in change of the displacement field. 

0

,
( ) ( )

n V
n

ε ε
ε

ε ω ω

= + =D E P E. 
The result is a change in  and consequently a change in  and  speed of light 
in the medium.  and  are functions of the frequency of the EM waves. 

0
0

e en K Kεμ μ ε
ε

≈ = = rUsually  so = ;  is the complex dielectric function.
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Physical meaning of the index of 
frefraction I

nConsider a general case where  is a complex number 

( )
0

' ".
i t

n
n n in

e ω⋅ −

= +

= k rE E

Co s de a ge e a case e e s a co p e u be
 Consider the E component of a plane wave, 

0

0

,k
k

 the propagation vector in medium is complex. 
 is propagation vector in vacuum. 0 p p g

0
PV c nVω ω
= = =

k k
With , the phase velocity, and 

0
nn

V c
ω ω

→ = = =k k  for one-dimensional case
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0 0 0 0

n n in n x n xi x t i x t i ti kx t c c c c
y y y yE E e E e E e E e e

ω ω ωω ω ωω
+

− − − −−= = = =



Physical meaning of the index of 
frefraction II

" '( )n x n xi tω ω ( )

0

"

i t
c c

y

n x
c

E E e e

e

ω

ω

− −

−

=

 is a real term and decays exponentially as wave propagates.
'( )n xi t
ce

ω −

y p y p p g

 has a harmonic wave form and propagates without loss
This suggests that

",n n
This suggests that 

 the imaginary part of 

',n n

 is associated with absorption. 

 the real part of  is associated with propagation.

"
' /

n
n n c V= =

In absence of , the case in many dielectrics in the visible part of
the EM spectrum,  is simply the ratio of the speeds in 

26' /n n c V= =
vacuum and in the medium. 

 is also called absolute index of refraction.  



Frequency dependence of the index of 
frefraction

The wavelength dependence of n is 
stronger at short wavelengths or high 
frequencies.
For most dielectrics the imaginary 
part of the n is negligible in the visible
band
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The electromagnetic spectrumThe electromagnetic spectrum

28



Energy and momentum IEnergy and momentum I
Physical manifestation of electromagnetic waves is their enegy and 
momentum.

,u

∇

Energy density  is radiant energy per unit volume 

In order to calculate the energy content of the EM waves we start from 
( ) ( ) ( )∇ ∇E H H E E H∇ ( ) ( ) ( )

t t
σ

⋅ × = ⋅ ∇× − ⋅ ∇×
∂ ∂

∇× = − ∇× = + =
∂ ∂

E H H E E H
B DE H J J EUsing  and  and 

2

( ) ( ) ( ) . ( ) ( ) .

( ) 1 ( . ) 1
t t t t

H

σ

μ μ

∂ ∂ ∂ ∂
∇ ⋅ × = ⋅ − − ⋅ − = ⋅ − − ⋅ −

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ⎛ ⎞

⎜ ⎟

B D B DE H H E E J H E E E

B H H HH H 2

2

( ) ( )
2 2

( ) 1 ( . ) 1
2 2

H
t t t t

E
t t t t

μ μ μ

ε ε ε

⋅ = ⋅ = = ⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠
∂ ∂ ∂ ∂ ⎛ ⎞⋅ = ⋅ = = ⎜∂ ∂ ∂ ∂ ⎝ ⎠

H H

D E E EE E ⎟
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2 2t t t t∂ ∂ ∂ ∂ ⎝ ⎠

2 2 21 1( )
2 2

E H E
t

ε μ σ∂ ⎛ ⎞∇ ⋅ × = − + −⎜ ⎟∂ ⎝ ⎠
E H



Energy and momentum IIEnergy and momentum II

2 2 21 1( ) E H Eε μ σ∂ ⎛ ⎞∇ ⋅ × = − + −⎜ ⎟E H( )
2 2

( )

E H E
t

dV d

ε μ σ∇ × +⎜ ⎟∂ ⎝ ⎠

∇∫ ∫

E H

E H E H

Integrating both sides over a volume V, and applying the 

di th ( )

1
V S

dV ds

d Eε

∇ ⋅ × = × ⋅

∂
× ⋅ = −

∫ ∫

∫

E H E H

E H s

v

v

divergence theorem  

2 2 21 H dV E dVμ σ⎛ ⎞+ −⎜ ⎟∫ ∫2S

d E
t

ε× =
∂∫ E H s

��	�

v

power rate leaving the 
volume from its surface

2V V

H dV E dV

σ

μ σ+⎜ ⎟
⎝ ⎠∫ ∫

E

�����	����

time-rate of change of energy stored ohmic power dissipated in the 
in electric and magnetic fields volume as a result of 

conduction current density  

��	�


y
in presence of

×
E

E HThus the  is a vector representing power flow per unit volume.   
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Poynting’s TheoremPoynting s Theorem
21 ( / )W m

μ
= = × = ×S P E H E B    is known as Poynting vector. 

μ
=S S

P S
power density crossing a surface whose normal is parallel to .

Poynting's theorem: surface integral of or over a closed

,S

P SPoynting s theorem: surface integral of  or  over a closed 

surface  equals the 

( )

V S

d dV P dVδ
∫ ∫ ∫Sv

power leaving the enclosed volume  by .

h

2 * *

. ( )

1 1 1

e m
S V V

d u u dV P dV
t

u E

σδ

ε ε

− = + +

= = ⋅ = ⋅ =

∫ ∫ ∫S s

E E D D

v   where

Electric energy density

2 * *

2 2 2
1 1 1
2 2 2

e

e

u E

u H

ε ε
ε

μ μ
μ

= = ⋅ = ⋅ =

= = ⋅ = ⋅ =

E E D D

H H B B

Electric energy density

Magnetic energy density
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2 *

2 2 2
P Eσ

μ
σ σ= = ⋅ =E E  Ohmic power density



ExerciseExercise

RV1 16) a) Prove that for a harmonic plane electromagnetic wave

. .

RV1-16) a) Prove that for a harmonic plane electromagnetic wave 
with the following  field component traveling through an insulating 
isotropic medium,  In vacuum V c= =

E
E B E B

0 )
p ,
cos(  

b) Calculate
tω= ⋅ −E E k r

 the magnitude of the poynting vector  
c) Prove that the energy content of this plane wave, in unit volume,
due to electric and magnetic fields is equal. 
d) Calculate the total energy per unit volumed) Calculate the total energy per unit volume.
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IrradianceIrradiance
IIrradiance , or the amount of light: average energy over unit area per unit 

,
I A

S
time.  is independent of detector area , and duration of measurement. 
Time averaged value of the Poynting vector  or ir

T

radiance is:  

2

2

1 ( )

Tt

T
Tt

I dt
T

+

−

≡ = ×∫S E H  

2

,T τ�Note that the averaging time  has to be much greater than the 
period.

EIrradince is proportional to the square of the amplitude of the  field. 
For linear, homo

c
geneous, isotropic dielectric 
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2 2 2
0

0
T T T

cI V E I B c Eε ε
μ

= = =    In vacuum:      
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