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Wave Equation

Chapter Goal:

developing the mathematical expressions for wave motion.
Most general case IE
Harmonic waves

Electromagnetic (EM) waves

Y
=l

Light waves
Energy delivered by such EM waves f
A

© 2007 Pearson Prentice Hall, Inc.

Wave:
*A self sustaining energy-carrying disturbance of a medium through which it propagates.

eLongitudinal wave: the medium is displaced in the direction of motion of the
wave.

*Transverse wave: the medium is displaced in a direction perpendicular to that of
the motion of the wave.

*When a wave propagates, the disturbance advances, not the medium. That is why
waves can propagate faster than the medium carrying them (Leonardo da Vinci).

3/11/2009 Wave Equations 2



Equation for mathematical form of a pulse

Goal: developing a mathematical expression for the most general form of a one-dimensional (1D)
traveling wave. Consider:

O(x, y) < A stationary coordinate system. ~ O'(x',y') «- A moving coordinate system.

V <« Relative speed of motion of O'(x',y') to O(X,y) inthe + x direction

y'= f (x') < A one dimensionnal pulse of arbitrary time-independent shape fixed to O'(x",y")
y or y' is the transverse displacement from equilibrium (the disturbance). As O' moves the pulse

maintains its shape. Relationship between the coordinates of an sqpbitrary point on the pulse
X'=x-Vt

P(x,y) and P(x'y") %{y'yf(x')f(x—Vt)/\/\/w\m

For a pulse moving in —x directiony'= f (x+Vf) o

> X'

(a) Stationary wave pulse

y'=f(xFVt) — for +xand+ for —x

—
Equation for mathematical v
form of a pulse

: |
f can be any function for example x ¢

y = Asin(k[x—-Vt]) traveling periodic in +x

o o’

y = A(x+Vt)2 traveling in —x

vl

Y

X-Vt)

y = e traveling in +x

—— . e —— i — —



One dimensional wave equation

The wave equation is a partial differential equation that any arbitrary wave form will satisfy it.
o’y 1 d%
ox>  V? ot?
To show that if a given function represents a traveling wave, it is sufficient to represent it in the

Verify that any wave of the formy = f (x FVt) satisfies

the 1D wave equation,

form of y = f (xFVt) or prove that it satisfies the wave equation.

Ly
A
p/\}"_\mf)
» X
O.‘

vl

Y

—— . e —— i — —



Harmonic waves

Harmonic waves are smooth patterns that repeat endlesly. They involve the sine and cosine functions:
y = Asin(k[x—Vt]) ory = Acos(k[x—Vt])
A and k are constants that specify a wave without altering its harmonic nature. The sin and cos functions

form a complete set of functions so a linear combination of them is also a wave. Using this property we
can construct complicated waveforms from linear superposition of the simple sin and cos functions.
y

-(—/\4>(
Amplitude A: the maximum value of the disturbance |

Wavelength A: the repetitive spatial unit of the wave m— TA /\
Asink A)+Vt |= Asink Vit >
sin [(X+ )+ ] sink (x+ )}M:Znork:%{ \/

sinx=sin(x+27z) t = constant

sin x =cos(x—/2) so sin is equivalent to cosin, shifted by 7/2. A

Propagation constant: |k = 27/ 4| related to spatial period A (a)

k is also called spatial frequency or number of waves in 27 y

Period T: the repetitive temporal unit of the wave I [e—T—>|

Asink| x+V (t+T)]= Asink (x+Vt) > KVT =27 or VT / 1 =1 __

Frequency v : number of oscillations per unittimev =1/T —»|V =v4 /\ TA /\ >
Angular frequency: o = 2zv related to temporal period v

Wave number: x =1/ 4 number of waves per unit length ¥ = constant

(b)
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Phase, phase velocity and harmonic waves, initial phase

SIn

=A K(XFVt

g Cos*- (xz )]
sin[ sin

y=A' 272'()( th ! 27[(—
cos|] \4A 4 Ccos
sin[ sin

y = [2—”x¢zmﬂzA ( e
cos|\ 4 COS| ~—5—

kX F wt

Phase

y=0forx=0andt=0
y=Aforx=0andt=0

X _

=)
|

}Initial phase =0

Phase: argument of the sin or cosine function in a harmonic wave that is a function of space and time.

#=k (xFVt) = 2%(%1%) = k¥ ot

For any set of x and t that ¢ stays constant the displacement y = Asin (¢) is also constant.

Motion of a fixed point on a wavefront is described by motion of a constant phase point.

For a point with ¢ = constant we have

_ax
ol

dg=0=kdxFVdt > |V

phase —

General formula

Phase velocity of a wave is speed of the motion of a constant-phase point on a disturbance.

Value of the pase velocity: for a harmonic wave at any given time g =kxF ot + ¢

For constant phase: o¢ k% To=
otl,
Initial phase =¢, — y = Asin| k(xFV

OX

phase =

ot

0>V -V .= only for harmonic waves

phase

=~

¢

t)+¢, |;att=0andx=0—y=Asing, =y, > ¢, =sin" (ﬁ)



Exercise
For the wavefunction w(x,t) =10°sin z(3x10°x +9x10°t +0.5)

in Sl units find the following quantities:

a) speed, b) wavelength, c) frequency, d) period, €) amplitude,

f) phase, g) initial phase, h) phase att =10 s, i) phase velocity,

j) compare the speed and the phase velocity.

k) what is the direction of the motion of the wave. Does phse velocity

indicate the direction of motion properly?

k) what is magnitude of the wave at x=0whent=0,7/4,7/2,3t/4,77?

) plot the profile of the wave at t =0 with initial pahse equal to 0, 0.57,

T, 27T.



Complex numbers

More often wavefunctions are expressed in complex exponentials since complex

exponentials can simplify the trigonometric expressions.

Z=Z7+ |y Orz=x+iy;ior | =+/-1 and both x (real part) andy (imaginary part)

are real numbers.

Absolute value or modulus: |z |=/X* + y°;

Argument: tan¢ = y

X
We can also write z = Ae'” and

z" = Ae™” the complex conjugate of z
Euler's formula: e =cos¢+ising — z = A(COS ¢ +isin @)

> Re

where x=Acos¢ and y=Asing
A=|z|=+x*+y’ is the magnitude or amplitude

¢=tan™ (lj is the phase
X

Also z° = x—iy is the complex conjugate of z = x +iy.

2" =(|z|e’)(|z]e™) =z
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0 ei@
Euler formula and 0 1
harmonics waves as a complex function m/2|
m|—1
|¢ . - - <
e’ =cosg+I1sing 3721 —i
Using this formula we can express a harmonic wave
as a real or imaginary part of a complex function. +1
y — Ael(kX-a)t)

y=Re| y |= Acos(kx-at) or -1

y=1Im|y |=Asin(kx-at)

—1
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Any equatrion that involves linear terms in §/ and its derivatives

will hold for y = Re(gl) andy= Im(glj



Plane waves
Wavefront: a surface over which the phase of a wave is constant.

Plane waves have planar wavefronts that are surfaces perpendicular to the direction
of propagation k. We write equation of a plane that is passing through p,(X,, Y,, Z,)
and is perpendicular to k (direction of propagation).

Consider an arbitrary point p on the planar wavefront, we must have:

(r-r,)k =0 — ker = ker, = constnt z

Is equation of such a plane perpendicular to k
w(r) = Asin(ker) is a function defined

on a family of planes all perpendicular to k.
Phase and (r) are constant on one plane
(wavefront) but they vary sinusoidally

from plane to plane.

The progressive wave equation is then:

w(r,t) = Asin(ker Fwt) or X
w(r,t) = Ae'“ T =Acos(ker F wt) +iAsin(ker ¥ ot)

w(r,t) = Ae'treosfel = pe' Tl where s is the component of r along the direction

of propagation or k. Amplitude of a plane wave stays constant as it propagates.
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Harmonic waves in 3-dimension
A general harmonic wave In three-dimension in complex form:
w(r,t) = Ae'lc
The 3-D wave equation that satisfies y (r,t)
o’y 0w 0w 1 0y
> T A2 T A T2 a2
ox- oy~ o0z° V- ot
o o° 0 1 0%y
2t T a2 (Y T2 A2
ox® oy° oz Ve ot
o° o° 0
= +
ox>  oy* o1’
2 _iffzw
V? at?

3-D wave equation




Spherical waves
By solving the differential spherical wave equation we can arrive at harmonic
spherical wave function:

w(r,t)= ésin k(r ¥Vt)

l//(l’,t) _ éeik(th) _ éei(kryot)
r r
that represents cluster of concentric shperes

at any instance.
On each sphere r is constant so y(r,t) is constant.
Here A, the source strength is a constant.

— is the amplitude and it varies inversly with the distance from the source to
.

2
: : W A . :
conserve the energy. The irradiance in —; « (—j IS the iverse square law of
m r
propagation for the spherical waves.
Same as plane waves, for spherical waves
k=2F =%
A T
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Cylindrical Waves

"
p 1s the perpendicular distance from the line of symmetry of the cylindrical wave.
If the the line of sylmmetry is the z axis then

These waves are not exact solutions of the wave function. ‘

So they do not exactly represent physical waves.
But they are useful to express waves coming out
of a slit illuminated by a plane wave.

ei(kpia)t)

Emerging
cylindrical waves

Incident
plane waves

© 2007 Pearson Prentice Hall, Inc.

3/11/2009 Wave Equations

13



Hermite-Gaussian waves
A good representation of the laser beams and an approximate solution to the wave equation.
Good for the cases that the irradiance is strongly confined to the direction of propagation.

Irradiance variation
in transverse plane

L Yrradiance profile line

X0 Yo 4

Wavefront

© 2007 Pearson Prentice Hall, Inc.
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Electromagnetic waves
- The harmonic wave equation can represent any type of disturbance with sinusoidal behavior.
- Physical significance of the disturbance is different for different systems (pressure, displacement ...)
- Maxwell showed that light is composed of electric and magnetic fields oscillating perpendicular

to each other and propagating in the direction k, perpendicular to the plane of oscillations.

- For light waves the disturbance is the
magnitude of varying electric or magnetic fields

that are described with the following harmonic
wavefunctions:

E=E.'“™ =E,sin(k.r-at),

B=B,e'“" =B, sin(k.r — at)

Electric fields are generated by electric
charges and time-verying magnetic fields. @)
Magnetic fields are generated by electric '

currents (charge in motion) and time-
varying electric fields.
This intedependence of the E and B is

a key point in description of the light.
Lorentz force: an electric charge g, moving
with velocity of v in an area that contains

both E and B fileds, feels forces due to existance of both fields. |F =q-(E+vxB)
3/11/2009 Wave Equations 15




Before Maxwell

Faraday's induction law: a time-varying magnetic field will have an

electric field associated with it. cﬁc E.dl=- ”%—?-ds
A

Gauss's law-electric: <ﬁ>AE-ds :ijﬂpdv, when there are no
€0 "V

sources or sinks of the electric field within the region encompassed
by a closed surface, the net flux through the surface equals to zero.

Gauss's law-magnetic: ©,, = @AB-ds =0, there is no magnetic monopole

Ampere's circuital law: cﬁc B-dl= y”(J +g%—|t£j-ds, a time-varying
A

E-field or charges in motion (electric current) will generate a B-field



Maxwell equations; integral form

Behavior of electric and magnetic fields in a medium with
electric permitivity £, and magnetic permeability z, in
presence of free charges p, and current density J, is explained
by four integral equations known as Maxwell equations.

<j5 E- _[ _[ —-ds <« Farady
CJSC%- dT:g(J+g%—fj-ds <« Amper
B-ds=0 <« Gauss magnetic

<ﬁ>A cE-ds =m pdV <« Gauss electric



Maxwell equations; differential form

CE'dT='H%—?'dS —>V><E:—aa—|t3
A
C_ﬁC%-dT= I(J+5%—fj-ds —>V><B=,L1(J+52—Itzj
A
AB-ds:O S3V.-B=0
@AgE-dS:m/)dV —>V-E:§

We used the following theorems: Stoke's <j§c E-di=[[VxE-ds

Gauss's <'f:'|5AB-ds = ]V-de



Constitutive relations

H = Magnetic field; B =Magnetic induction (effect of the H in the medium B = uH);
E =Electric field; D =Electric displacement (effect of the E in the medium D=¢E);
J = Current density;

Constituitive relations are:. D =D(E,B); H=H(E,B); J=J(E,B)

These relations may be nonliner or depend on the past (hysteresis).

Linear response: the applied fields are small so they induce electric and magnetic

polarizations proportional to the magnitude of the applied field

(ferroelectric and ferromagnetic material are exceptions are nonlinear material)
. _ -1 .
D, = ;gaﬂEﬁ, H, = ;/uaﬂBaﬂ «, B are the coordinates x,y,z.

¢,5 IS electric permitivity or dielectric tensor;

y;; IS inverse magnetic permitivity tensor

For material isotropic in space both ¢ and u are diagonal matrices and all elements

are equal. For isotropic material D=¢E and H=yx"'B

At high enough fields every material is nonlinear (nonlinear optics)

— @ (2)
D,=> eDE,+> el EE +..
p By




Electric field in medium

1) P polarization vector: P = ¢, yE electric dipole moment per unit volume.

2) D displacement field: D = ¢,E + P electric field within the material

3) E internal electric field: E =EB and we have D=¢(E) E
&y &

D and E lines begin and end on free charges or polarization cahrges.
In absence of free charge field lines close on temselves
(V-E=V-D=0).

For homogeneous, linear, isotropic dielectrics P and E are in the

same direction so D =¢E, where e =¢g,(1+ y), and K, =¢, =¢/g, =1+ y
IS the relative dielectric constant or function.

4) J current density: acording to the Ohm's law (I =V /R) electric field intensity

determines the flow of the cahrge in a conductor J = oE, true for conductors at
constant temperature.



Constitutive relations: magnetic
fields in a medium

1) M magnetic polarization vector: M =K, H.
2) H magnetic field intensity: H = 4, 'B - M,

For homogeneous, linear (nonferromagnetic), isotropic

medium B and H are parallel and proportional,

H=x"Band g=u,(1+K_ )and x = =(1+K_ )

Ho
For most optical material i =1 or K =0 or no magnetization occures

under magnetic field.



Maxwell equations using the
constitutive relations

VxE:—a—B —)VXE:—ﬁ—B
ot ot
v.E=F 5V.D=p
g
VxB=u J+58E >V><H:J+5—D
ot ot



The wave equation for the E and M
components of the EM waves

Maxwell equations in nonconducting medium (o =0, J =0) vacuum

oB ok
g:gO’ /u:ﬂo; (1) VXE——E, (2) VXB:ILJOEOE

(3) V-B=0, (4) V-E=0

Take curl of (1) and use (2) to eliminate B, VxV xE =—§(V><B),

0°E , =
VxVxE=-pu,e,—5 pog , V(V-E)-V°E=—p,6,— p , using (4) we get
2 2
differential wave equation: [V°E = &, 0 IZE = 12 0 IZE with|| V |= L
o VZ ot (e,
0B 1 0B

We can also show: |V°B = u.¢ = ,
Hofo 52 =\ ot




The index of refraction

Velocity of light based on Maxwell's theoretical treatment in vacuum is

c= 1 and in mediumis 'V = 1 .
\ okl VeH
Absolute index of refraction defined as: n=— = <% - NCHTENEYTS
Eoly
The E field polarizes the medium rusulting in change of the displacement field.
D=¢,E+P=¢E.

The result is a change in £ and consequently a change in n and V, speed of light
in the medium. ¢(w) and n(w) are functions of the frequency of the EM waves.

Usually g~ 1, son= /i =K, :\/;r; K, is the complex dielectric function.
€0



Physical meaning of the index of
refraction |

Consider a general case where n is a complex number

n=n'+in". Consider the E component of a plane wave,
. i(k-r—ot)

E=E,e

K, the propagation vector in medium is complex.

K, IS propagation vector in vacuum.

, the phase velocity, and c = 2L _nv

kol

L]
K

— k| =nlk,|= @ _“N tor one-dimensional case
V ¢

iyt TR LN _

. i(kx—wt) _ _ —
E=E,e¢ =Ey,e ° =E,e ¢ =E,e °e

With V, =




Physical meaning of the index of
refraction Il

nN"wx . ,n'x
e 1o( .
E=E,e ‘e
_n"a)x

e ¢ Is arealterm and decays exponentially as wave propagates.

_t)

ia)(n—'x—t)

e ¢ has aharmonic wave form and propagates without loss

This suggests that
n", the imaginary part of n is associated with absorption.

n', the real part of n is associated with propagation.

In absence of n", the case in many dielectrics in the visible part of
the EM spectrum, n=n"'=c/V is simply the ratio of the speeds in
vacuum and in the medium.

n=n'=c/V is also called absolute index of refraction.




Frequency dependence of the index of
refraction

Index of refraction (n)

-
-
—

White Deviation of
light ~ yellow light

Measure of
dispersion

The wavelength dependence of n is
stronger at short wavelengths or high
frequencies.

For most dielectrics the imaginary
part of the n is negligible in the visible
band

400 500 600 700
Wavelength in vacuum (nm) 27

puiblishing as Addison Weshay



The electromagnetic spectrum
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Energy and momentum |

Physical manifestation of electromagnetic waves is their enegy and
momentum.
Energy density u, is radiant energy per unit volume

In order to calculate the energy content of the EM waves we start from
V- (ExH)=H-(VXE)-E-(VxH)

Using Vsz—%—? and V><H=J+(2—It3 and J=cE

V-(ExH):H-(—%—ltB)—E-(%—?)—E.J:H-(—z—?)—E-(%—?)—aE.E

0B _ L duH) _10(uHH) _ 2 (1ﬂH2j

ot ot 2 ot ot 2
D _ - 8(sE) _10(:EE)_a(1
ot ot 2 ot at\2

V- (Ex H)z—%(%gE2+%yH2j—aE2



Energy and momentum ||

V- (ExH) =—;(;€E2 +;uH2j—0E2

Integrating both sides over a volume V, and applying the

divergence theorem |V-(ExH) dV = <J5 ExH-ds
v 5
qSExH.ds =—3j 15E2+1yH2jdV— jaEZdv
E A v
power rateTeaving the time-rate of changg of energy stored ohmic power d?gsipated in the
volume from its surface in electric and magnetic fields volume as a result of

conduction current density oE
in presence of E

Thus the ExH Is a vector representing power flow per unit volume.




Poynting’s Theorem

S=P=ExH-= L ExB (W/m?) is known as Poynting vector.

U
\S\ = power density crossing a surface whose normal is parallel to S.

Poynting's theorem: surface integral of P or S over a closed

surface S, equals the power leaving the enclosed volume V by S.

—<J5 S.ds = éj(ue +u_)dV + j PdV where
S 5t Vv \Y

u, = 1gE2 = 1gE E'=1D.D' =Electric energy density
2 2 2&
1 1 1

u =-uH?==uH-H =—B-B" =Magnetic energy density
2 2 211

P =cE*=0E-E = Ohmic power density



Exercise

RV1-16) a) Prove that for a harmonic plane electromagnetic wave
with the following E field component traveling through an insulating
isotropic medium, |E|=V |B|. In vacuum |E|=c|B|.
E=E,cos(k-r—owt)

b) Calculate the magnitude of the poynting vector

c) Prove that the energy content of this plane wave, in unit volume,
due to electric and magnetic fields is equal.

d) Calculate the total energy per unit volume.




Irradiance

Irradiance |, or the amount of light: average energy over unit area per unit

time. | is independent of detector area A, and duration of measurement.

Time averaged value of the Poynting vector S, or irradiance is:

t+I

1 2
(S), == jT (Ex H)dt

t—
2

Note that the averaging time T > 7, has to be much greater than the
period.
Irradince is proportional to the square of the amplitude of the E field.

For linear, homogeneous, isotropic dielectric

| =gV (E?)_  Invacuum: | :'ULO<BZ>T = 5,¢(E?).



x=125m

x=10m

x=075m
A=10m

x=05m
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x=025m
|
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= e = 'S d
F=0 El
=3
IE, x X X
(= 3m v =1z ¥ p=2m ¥
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E\ Ll E=0
x X X

(a)
= y =T y il ¥
=l = r=g o -3
2 % g
E E
x X x
_ 3 ¥ w ¥ _5m ¥
=t = . !74:11‘
X - X X
E E E
¥ 3 2 .
E="w
i S
i E
E
X x x

E = Eysin(kz — i + £ cos(kz — wnf = By sin(kz — on)f + & sin(kz — wr + w/2)F
(b)
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